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Abstract—The success of many Super-resolution fluorescence
microscopy methods lie in the exploitation of the inherent
stochasticity of a light emitting molecule’s photon emission state,
allowing sparse subsets of molecules to be spatially detected with
high precision. This photo-switching behavior, however, induces
multiple localizations from each molecule during an imaging ex-
periment, which therefore gives rise to misleading representations
of their true spatial locations. By formulating a state-space model
relating true molecular positions with observation sets collected
across time, we show that the full Bayes filter for this problem can
be derived and positions recovered via a Markov Chain Monte
Carlo sampler.

Index Terms—Super-resolution imaging, fluorescence mi-
croscopy, photo-switching, spatial-temporal point process, ran-
dom set, target detection, state-space modeling, Bayes filter, re-
versible jump Markov Chain Monte Carlo, detection probability.

I. INTRODUCTION

Many fluorescence microscopy techniques such as photo-
activated localization microscopy (PALM) [1], [2] or stochas-
tic optical reconstruction microscopy (STORM) [3], [4] are
able to use optical imaging to produce high resolution images
of biological organisms by utilizing a property of fluorescing
molecules called photo-switching. A light emitting molecule
or fluorophore can be made to stochastically photo-switch
between a photon emission On state and several dark states
[5], [6], enabling only a sparse subset of molecules to be
detected by the camera at any one time. When a dense
set of fluorophores (of unknown cardinality) are filmed over
a number of frames, this enables accurate localizations to
be made when molecules are detectable. However, their re-
sulting non-stationary photo-switching behaviors invoke non
constant detection rates per frame, which in turn generate a
random number of offspring coordinates per molecule during
an experiment [7]. Such measurements determined by fitting
point spread functions (PSF) [8], [9] to high photon intensity
spots, will differ between frames as the same molecules are
localized about their true spatial locations. Figures la and
1b provide a visualization as to how these fluorophores are
localized in space-time. When multiple localizations are made,
the superimposed image (see Figure 1b) does not allow for
individual resolvent. The inference problem therefore lies in
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identifying both the number of fluorophores and their true
spatial positions.

X
X

(a) True spatial coordinates of fluorophores.

X

X

(b) Time aggregated localizations of fluorophores.

Fig. 1: Figure la shows the true spatial locations of a set of
fluorophores from one fluorescence microscopy experiment.
Figure 1b shows the aggregated measurements of localized
fluorophores detected from the first 3 frames; objects detected
from frame 1 (blue), frame 2 (red) and frame 3 (green) are
shown with respect to the true locations (black).

The idea of modeling the clusters obtained in the superim-
posed image [10], [11] or the spatial distributions of molecules
themselves [12] via spatial point patterns or random finite
sets (RFS) [13]-[15], is familiar. While modeling clusters and
sampling true locations (via e.g. MCMC methods [16]) is well
studied, using the superimposed image will in general lead to
spatial biases through false positive localizations and cases
where molecules are spatially close. Nevertheless, inferring
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upon point process cardinalities and positions via Bayesian
filtering methods has been used for many radar/sonar tracking,
navigation and computer vision applications [15], [17], [18].
Such methods are attractive due to their temporal incorporation
and we thus look to formulate a model for this problem
which rests on similar ideology. To the best of our knowledge,
inference of detected points which so heavily rely on the
temporal nature at which they occur has not been studied for
this application.

II. MODELING FLUOROPHORE PHOTO-SWITCHING

The experimental set-up gives rise to an unknown initial
probability mass over the hidden photon emission states of
each fluorophore. This implies that in general, there is a
non-zero amount of time taken for each molecule to first
reach its photon-emission state, which therefore induces a pure
spatial-temporal hidden birth process as new fluorophores are
detected in each frame during an experiment. Due to this set-
up, throughout this paper we adopt the discrete time indexing
n € Zx to reference each frame of an imaging experiment.

Suppose at time n there are K(n) := |X,| fluorophores
that have already reached their photon-emission states, where
Xn = {Xn1,-.-,Xn K(n)} and each parent x € S denotes
the true position of a fluorophore that is present. Here,
we assume that imaging occurs on some bounded window
S C RY whereby d € {2,3} for 2D/3D applications.
When N frames are recorded during an experiment, at every
time n = 0,1,..., Np — 1, a set of offspring measurements
Zn = {Zn1,- .. 2Zn M(n)} is recorded. We define Z,, to be
the multi-target measurement formed by the K(n) present
fluorophores and background noise.

A suitable model we choose to place is given by

X() - BO
Xn = Xn—l UBn
Zp = ®(X,) U Ay

n>1
n >0,

where X, denotes the hidden parent RFS and Z, denotes
the observed RFS. In particular, B,, denotes the independent
birth RFS of fluorophores “born” in frame n, ®(X,,) denotes
the RFS of primary target generated measurements and A,
independently denotes the RFS of false positive measurements.
An illustration of this model over three frames is shown in
Figure 2, which compares the hidden RFS X;, X, and X,
with their observation counterparts Zj, Z; and Zs.

With an unknown number of molecules, both the birth RFS
B,, and RFS for false positives are assumed to be a priori
Poisson, with respective spatial densities fp, (X ) and fa, (X)
defined for any X C S. B, is modeled to have cardinality
distribution N ~ Poi(App ), where A denotes the number
of molecules expected to be imaged prior to the experiment
and pp,n denotes the probability of a fluorophore birth at
time step n, assumed to be known given its photo-switching
behavior. Moreover, A,, is modeled to have cardinality dis-
tribution N4, ~ Poi(a), where « is the unknown average
number of false positive observations produced in a frame. In
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Fig. 2: An illustration of the RFS X, compared with the RFS
Z,, against time n. Left: X, = By is plotted in red at time
n = 0, X; = Xy U B, is plotted with B, in green at time
n =1 and X, = X; U Bs is plotted with B in blue at time
n = 2. Right: Observation sets Z, Z,, Z> are shown, with
false positive observations plotted in gray.

this manner, the spatial densities (with respect to the unit rate
Poisson process), take the form [15]

fB,(X) = )50 TT App, b(x)
xeX

fa, (X) =etS)—a H aa(x)

xeX

n >0,

where (S) denotes the Lebesgue measure of S and b(x),
a(x) denote the spatial distributions of births and false posi-
tives, respectively. In particular, these densities must satisfy
Jsb(x) dx = [ga(x) dx = 1. In this paper, we will
only be dealing with the case where births and false pos-
itives are uniformly distributed over S and therefore when
b(x) = a(x) = ﬁ

Each fluorophore or parent x € X,, generates an offspring
z € ®(X,,) such that z = () with probability 1 — pp ,, or is a
variate from the density f(z*|x) otherwise. Here, pp ,, denotes
the detection probability of a parent in frame n (also assumed
to be known) and f(z*|x) o exp(— 55 (z* — x) " (z* — x))
denotes the likelihood that offspring point z* is generated from
parent x. The localization standard deviation ¢ is assumed to
be known.
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A. Derivation of the Bayes Filter

By defining the limiting RFS X* := lim,,_,,, X,, which
is interpreted as the implicit point pattern configuration of the
parents, the true configuration of X* can thereby be updated
through time. Specifically, for any n € Z~(, we wish to infer
upon the parent RFS X, (with its cardinality), and posterior
estimates for « given all observations Z(™) := U_, Z; through
the Bayes-updated density

Fx.0120 (Xn, a|ZM™)
F2.1%,0(Zn| X, @) fx 2000 ,o(Xn| 277D, @)(a),
)

where 7(a) denotes a suitable prior probability density for c.
Equation (1) can be computed by first using the multi-target
likelihood as described in [15] by

[z, |Xa(Z |X, @) =
PD,nf (Zogi)|xi) u(S)
(1 — Pp, n lxlfA,,(Z Z H (1 _( ! ;A
0 i:0(i)>0 PDn
2
where the sum is taken over all mappings 0 : {1,...,|X|} —

{0,1,...,|Z,|}, whereby 6(i) = 0(7') > 0 = i =1
It should be noted here that when |Z,,| = 0, no observa-
tions are collected and the likelihood is therefore reduced to
fZ,.IX,a(mlxv a) = ey(S)—a(l o pD,n)lxl'

We can additionally show that up to a proportionality
constant, the density fxn|Z<.._1)‘Q(XH|Z("_1),a) takes the
form in (3) as is stated in Proposition 1.

Proposition 1. For any n € Zso, the density
fx|Z(,._1)‘a(Xn|Z("‘1),a) is proportional to the function

> X D> [ (Xn\ W) x

W,.CX, W, _,CW, Wi CW,

HfB

with Wo = 0
Proof. See Proof VI-A of the Appendix. O

z+l\W)fZ |X0(Z IWt+1: ) ) (3)

When the number of parents is large, the posterior density in
(1) will become computationally intractable. While difficulties
lie both in the evaluations of (3) and the likelihood function
(2), we implement a suitable approximation of (2) to improve
speed and tractability in the evaluation of the posterior density.

Specifically, for whenever |Z,| > 0, define the map-
pings ¢; : {1,...,|X[} = {0,1,...,|Z,|} \ {4} for j =

y|Zn| + 1, such that ¢;(i) = ¢;(i') >0 = i=71"

For each j, we can use a nearest neighbor search to identify
PD.v;f(=¢.(.)|Xx)#(s) .
Xa(l—po) 18

the mapping 43]- which gives [],. ;(i)>0
highest value. We then approximate (2) via

|Zn|+1
pan |x.‘)p,( )
(1- pp, n)lxlfA,. (Zn) z H /\a(f*(; ) '
=1 i:d,(i)>0 o

@

which is a valid approximation provided that the probability
of more than one false positive observation appearing in each
frame is negligible and that a sparse subset of the total number
of molecules is detected in each frame.

This approximation to computing the density in (3) enables
fast and accurate inference of the spatial coordinates of X,
and its cardinality via a Markov Chain Monte Carlo (MCMC)
sampler.

III. INFERENCE

Using the outlined decomposition of the Bayes filter, updat-
ing the parent locations X, through its conditional density in
(1) is done via a Birth-Death-Shift (Reversible-Jump) MCMC
algorithm described in [16], [19]. This algorithm is designed
to sample from posterior distributions with varying parameter
spaces, as is the case for spatial point patterns of unknown
cardinalities. Furthermore, updating the hyper-parameter « is
done via the Metropolis-Hastings algorithm. ,

A. Birth-Death-Shift Moves

Let X; = {X;,Xy,...,X,} be the configuration of the
hidden parent process, and «; the value of « at iteration i
of the sampler. An initial choice between either a shift move
or a birth/death move is made with probability ¢ and 1 — ¢
respectively [16], [19]. If a birth/death move is chosen, then
a component is added to the configuration with probability
p(k;), otherwise a point x* € X; is randomly chosen to be
deleted. When a birth choice is made, a component x;c! 41 sam-
pled uniformly over S is proposed. Then, X' = X;Ux] _, is
accepted with probability min(1, hy), where the birth hastings
ratio hy can be shown [16] to take the form

1= fr(ki+1)  p(S)
fK(ki) ki+1 !

with fi(k) = P(|X*| = k). Similarly if a death move is

chosen, then X’ is accepted with probability min(1, h4) where

the death hastings ratio hy is

fx (k - 1) k;

1 fr(ks) H(S

hy = PR x (&)

hg = PR x (6)
with X' = X; \ x*.

When a shift move is made, an index I is chosen uniformly
from the set {1,2,...,k;} and x' ~ Ny(X;,0214) is sam-
pled. Here, I; denotes the d-dimensional identity matrix and
012, is a pre-specified fixed proposal variance. The proposal
X' = {xi1,...,%X7-1,X',Xr41,..., Xk, } is then accepted
with probability min(1, h,), where the shift hastings ratio
hs = PR. In all instances, the posterior ratio (PR) is given
by

[20%,0(ZNe| X" i) fx) 20— o X'|ZVFD) ay)
[z01x,0(Zng | Xis i) fx  z0n-1) o Xi| ZNF 1) )

where  fz x.a(ZNg|-,-) is computed using (4) and
Fx|z- 6 (1ZNF=1),.) from (3).

PR =
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To avoid moves which sample over parameter spaces that
are either too small or too large, we take

frclh) {*k— if k € {kmin, kmin + 1, - - - kmax — 1, Kmax }

0  otherwise,

and choose p(k) = fx (k) for all k. Here, kuin and kyax can
either be user specified, or set to capture the majority of the
variance of fx (k) over k > 0.

Final estimates of parent locations can be obtained via
kernel smoothing methods applied on the samples obtained
from these moves.

B. Update moves

As previously stated, « is updated via the standard
Metropolis-Hastings algorithm. We assume that o € (0,1); a
constraint that aligns with standard Super-resolution imaging
conditions, whereby « is observed to be small but non-zero.
In doing so, this condition also validates the negligibility of
more than one false positive observation appearing in a frame.
As such, we chose 7(a) o< (1 — «)? 1, with 8* > 0 fixed.
This choice ensures that o has a greater mass around zero,
with the additional 3* = ﬁ — 1 term used to characterize
apriori knowledge of the average number of false positive
observations produced in a frame.

Given «;, o' is sampled from a Beta(1,/3;) distribution,
whereby we choose 3; = ITT"‘L to ensure that the mean of
this proposal is «;. The prop(')sed o' is then accepted with
probability min(1, h, ), where the update hastings ratio h,, is
given by

 [2,0x,a(ZNe| Xi @) fx 200 o(Xi| ZNVF D, )
fZ..IX,O (ZNF |Xi7 ai)leZ(""),Q(Xi|Z(NF_l)v a‘i)

1_al B*—1 ]-_ai B1—-1
X .
(1 - a,—) (1 —af )
We note here that this methodology can be extended to sam-
ple from other unknown parameters of the model. For example,
if the localization standard deviation o is unknown, then the

joint posterior distribution of unknown model parameters and
XN, can also be sampled in this step.

hy

IV. SIMULATIONS

We present results from two simulated fluorescence exper-
iments. In the first experiment, S = [0,1] x [0,1], A = 10,
|X*| =12, @ = 1072 and Ny = 100 whereas in the second
experiment, A = 20, | X*| = 22, a = 107! and Ny = 200. In
all experiments, o = 0.005, o, = 0.01, ¢ = 0.8 and 8* = 49.
The parameters pp, and pp , are computed using inferred
photo-switching rates derived from a temporal distribution as
is described in [7]. Results of coordinate estimates from the
derived Bayes filter, are given in Figures 3 and 4 for the first
and second experiments respectively. The posterior intensity
maps of samples in Figures 3a and 4a show the distribution
of samples gained from fy|zon(Xn,|ZNF)) over S after
a burn-in period of 10% samples. The coordinate estimates
are then plotted against true positions in Figures 3b and 4b.

The true cardinalities of the implicit point processes X* were
correctly identified in both experiments. From these plots, it
is evident that the sampler is able to successfully identify the
number of hidden parents, accurately estimate their true spatial
positions and finally, able to identify observations generated
directly by Xy, with those generated by false positives
measurements.
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(a) Posterior intensity map.
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(b) Coordinate estimates against true positions.

Fig. 3: 3a: Posterior intensity map of MCMC samples against
true positions (yellow stars). 3b: Coordinate estimates from
the Bayes filter (red crosses) plotted with the true positions
(yellow stars) and the superimposition of offspring observation
sets and false positive observations (blue circles) collected over
Np = 100 frames. Simulation conducted with S = [0,1] x
[0,1], A =10, ¢ = 0.005 and o = 10~ 2.

V. CONCLUSION

In this work, we have proposed a model to describe the time
varying spatial distribution of fluorescing molecules imaged
in Super-resolution fluorescence microscopy. By using a pure
birth process to model when fluorophores first reach their
photo-emission states, we have formulated a state-space model
which links the hidden parent RFS with observation sets
collected at each time frame n. This model, furthermore,
accounts for the common scenario in which observation sets
are corrupted by false positive observations. Using this, we
have carefully derived the Bayes filter which is used to
update the true point pattern of molecules across time. When
computing the Bayes-updated density, we have also provided
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a suitable approximation to increase computational feasibility
and have used this when sampling from the joint posterior
distribution of the parent process via a reversible jump MCMC
algorithm. We have lastly shown, through simulations, that the
true locations of parents or molecules and their cardinalities
can be recovered using this method.
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(b) Coordinate estimates against true positions.

Fig. 4: 4a: Posterior intensity map of MCMC samples against
true positions (yellow stars). 4b: Coordinate estimates from
the Bayes filter (red crosses) plotted with the true positions
(yellow stars) and the superimposition of offspring observation
sets and false positive observations (blue circles) collected over
Npg = 200 frames. Simulation conducted with S = [0,1] x
[0,1], A = 20, o = 0.005 and a = 107",

VI. APPENDIX
A. Proof of Proposition 1

Proof. For every n € Z~g, We can write
{X,|Z D} = (X, 1|20V} U {B,}, where the
point processes {X,, 1/Z™ 1V} and {B,} are independent
by model construction.

By the fundamental theorem of convolution [15], we have
for all n > 1 that

fx1ztn 1,0(XnlZ2"7 @)

3 fxizoen.o(WIZ07V,0) fp, (Xa \ W),
wcCX,
@)

where the sum is taken over all subsets W of X,,.
Since fp,(Xo) characterizes the distribution of X, we

have fX|Z(u)‘Q(X0|Zo,a) o le,|x,a(Zo|X0,a)fBo(Xo)~ Us-
ing this as an initialization for (7), coupled with the Bayes
update rule given in (1), yields the desired result. O
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