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Abstract

Motivation: Many recent advancements in single molecule localisation microscopy exploit the stochastic
photo-switching of fluorophores to reveal complex cellular structures beyond the classical diffraction limit.
However, this same stochasticity makes counting the number of molecules to high precision extremely
challenging, preventing key insight into the cellular structures and processes under observation.
Results: Modelling the photo-switching behaviour of a fluorophore as an unobserved continuous time
Markov process transitioning between a single fluorescent and multiple dark states, and fully mitigating
for missed blinks and false positives, we present a method for computing the exact probability distribution
for the number of observed localisations from a single photo-switching fluorophore. This is then extended
to provide the probability distribution for the number of localisations in a dSTORM experiment involving
an arbitrary number of molecules. We demonstrate that when training data is available to estimate photo-
switching rates, the unknown number of molecules can be accurately recovered from the posterior mode
of the number of molecules given the number of localisations. Finally, we demonstrate the method on
experimental data by quantifying the number of adapter protein Linker for Activation of T cells (LAT) on the
cell surface of the T cell immunological synapse.
Availability: Software available at https://github.com/lp1611/mol_count_dstorm.
Contact: lpatel@sandia.gov, e.cohen@imperial.ac.uk.
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Single molecule localisation microscopy (SMLM) approaches, such as
photoactivated localisation microscopy (PALM) (Betzig et al., 2006; Hess
et al., 2006) and stochastic optical reconstruction microscopy (STORM)
(Rust et al., 2006; Heilemann et al., 2008), form some of the most
celebrated advances in super-resolution microscopy. Using a fluorophore
with stochastic photo-switching properties (Van de Linde and Sauer, 2014;
Ha and Tinnefeld, 2012) can provide an imaging environment where the
majority of fluorophores are in a dark state, while a sparse number have
stochastically switched into a transient photon-emitting state, from here

on referred to as the On state. This results in the visible fluorophores being
sparse and well separated in space. With the use of a high-performance
camera the individual fluorophores in the On state can be identified and
localised with nanometre scale precision by fitting point spread functions
(Sage et al., 2015; Ober et al., 2015).

One of the most common avenues to SMLM is direct STORM
(dSTORM). As with the original implementation of STORM, dSTORM
uses conventional immuno-staining strategies to label the cells with
fluorophores i.e. the use of small molecule dyes and antibodies against
the protein of interest. In dSTORM, imaging of isolated fluorophores
is made possible by placing the majority of the dye molecules into
a very long lived dark state e.g. a radical state or a very long lived
triplet state. This is the purpose of the STORM buffer, of which there
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are many recipes, usually containing reducing and oxygen scavenging
components. The dye is initially emissive but when rapidly excited by
very high intensity excitation lasers, soon enters a dark state which is
much longer lived than the emissive state, thus rendering the majority
of fluorophores off. The dyes then cycle between dark and On states until
photobleaching occurs, rendering the dye permanently off. The wide range
of possible buffer compositions make it possible manipulate fluorophore
photophysical behaviour (Ha and Tinnefeld, 2012).

A key challenge that has persisted since the first SMLM methods were
developed has been the characterisation and quantification of this photo-
switching behaviour (Dempsey et al., 2012). In particular, being able to
accurately count the number of fluorescently labelled molecules from the
recorded localisations would allow much greater insight into the cellular
structures and processes under observation. This is a notoriously difficult
task as deriving the probability distribution for the number of localisations
per fluorophore is highly non-trivial due to complex photo-switching
models and imperfect imaging systems.

Methods exist for recovering the number of fluorescent molecules
in SMLM, however, these have primarily focused on photoactivated
localisation microscopy (PALM) and are not wholly applicable or
adaptable for counting fluorophores that are imaged via dSTORM. For
instance, the PALM methods of Lee et al. (2012); Fricke et al. (2015);
Nino et al. (2017); Rollins et al. (2014) assume a four state kinetic model
(inactive, photon-emitting/On, dark and bleached) for the photoactivatable
fluorescent protein (PA-FP). Each PA-FP begins in the non-emissive
inactive state before briefly moving into the photon-emitting On state.
Then, there is the possibility of a small number of repeat transitions
between this and a temporary dark state, before finally bleaching to a
permanent off state. This kinetic model is inappropriate for dSTORM in
which all fluorophores start in the On state, before stochastically moving
back and forth between this and one or more transient dark states, before
permanent bleaching. The analysis of Nieuwenhuizen et al. (2015) is
applicable for dSTORM, however, it assumes the fluorophores can occupy
only three states (On, dark and bleached), when in fact empirical evidence
supports the existence of multiple dark states (Lin et al., 2015; Patel et al.,
2019).

Importantly, common to Lee et al. (2012); Fricke et al. (2015); Nino
et al. (2017); Nieuwenhuizen et al. (2015) is the assumption that all
blinks (transitions to the On state followed by a return to a dark state)
are detected and hence the data is uncorrupted for statistical inference. In
fact missed blinks occur in two different ways; (i) a PA-FP or fluorophore
briefly transitions from the On state into a dark state and back again
within a single camera frame; this transition will not be detected as a
separate blink; (ii) a PA-FP or fluorophore may briefly transition from
a dark state to the On state for such a short time that the number of
emitted photons is insufficient to detect the event above background
noise. Accounting for these missed transitions is key for precise molecular
counting. Missed transitions will result in fewer blinks being recorded
than actually occurred, which in turn will lead to biased estimates of the
molecules being predicted. We note that in the four state PALM setting,
Rollins et al. (2014) attempts to mitigate for missed transitions, however,
to do so requires the exact extraction of dwell times from time-traces. This
is not suitable for dSTORM, particularly in densely labelled environments,
since the nuanced photo-switching behaviour means we cannot be certain
of a specific fluorophore’s photo-kinetic state at any one time.

The method of fluorophore counting presented in this paper utilises the
photo-switching and observation model developed in Patel et al. (2019).
Similar to Lee et al. (2012); Fricke et al. (2015); Nino et al. (2017);
Nieuwenhuizen et al. (2015); Rollins et al. (2014), a continuous time
Markov process is used to characterise the underlying and unobserved
photo-switching property of fluorophores in dSTORM. However, this
model is very general, allowing any number of dark states which can

either be set by the user or inferred via a model selection method (BIC).
Using the parameters of this Markov process, the observed distribution
of localisations can then be accurately quantified using a Hidden Markov
Model. Here, both missed blinks and false positives are fully accounted
for in the modelling, something which has been absent from molecular
counting methods thus far. By then performing counting using just the
localisation count, it is highly scalable, being able to count thousands of
fluorescent molecules with computational ease.

We first summarise key statistics of the photo-switching fluorophore. In
particular, we derive the exact form of the probability mass function for the
number of localisations a single fluorophore produces during an imaging
experiment. This distribution is specific to this application and highly
non-standard, therefore we provide expressions for its mean and variance
as derived via the probability generating function. This distribution, and
its moments, is fully characterised by the unknown photo-switching
imaging parameters, which are estimable through the photo-switching
hidden Markov model (PSHMM) fitting method described in Patel et al.
(2019). We then extend this distribution to give the probability mass
function of the cumulative number of localisations obtained from M

fluorescent molecules, and demonstrate its validity through simulations.
Using training data to estimate unknown photo-switching rates, we
can compute the posterior distributions over the unknown number of
fluorescing molecules, which is shown to recover M with high accuracy.
We finally demonstrate the validity of our method on two datasets. In
the first, we analyse Alexa Fluor 647 data and provide both maximum
a posteriori estimates of M from the resulting posterior distributions
and their associated 95% credible intervals (a Bayesian interpretation of
confidence intervals). The second studies a T-cell dataset, from which
the parameter vector is estimated via the PSHMM from available training
data and then used to predict fluorophore counts over small regions of the
resulting test experiment.

2 Methods

2.1 Modelling photoswitching kinetics

Following Patel et al. (2019), we model the stochastic photo-switching
behaviour of a fluorophore as a continuous time Markov process {X(t) :

t ∈ R≥0} that moves between a discrete, finite set of states. In order to
accommodate for the varying effects of different photo-physical models,
it allows {X(t)} to transition between an On state 1, d + 1 dark states
00, 01, . . . , 0d (where d ∈ Z≥0 denotes the number of multiple dark
states), and a photo-bleached state 2. As commonly referred to under
the widely assumed d = 0 model consisting of a single dark state,
we denote the state 00 as state 0. The general model, as is illustrated
in Figure 1a, allows for transitions from the On state to multiple dark
states through the first dark state 0, and further allows the photo-bleached
state to be accessed by any other state. The state space of {X(t)} is
SX = {0, 01, . . . , 0d, 1, 2}. Under this Markovian model, the holding
time in each state is exponentially distributed and parameterised by the
transition rates. These are denoted as λij for the transition rate from state
i to j (i, j = 0, 01, . . . , 0d, 1), and µi for the photo-bleaching rate from
state i to 2 (i = 0, 01, . . . , 0d, 1). These rates are summarised by the
generator matrix for {X(t)}

G =



−σ0 λ001 0 0 0 0 . . . λ01 µ0

0 −σ01 λ0102 0 0 0 . . . λ011 µ01

0 0 −σ02 λ0203 0 0 . . . λ021 µ02

...
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . −σ0d

λ0d1 µ0d

λ10 0 0 0 0 0 . . . −σ1 µ1

0 0 0 0 0 0 . . . 0 0


, (1)
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where σ0d
= λ0d1 + µ0d

, σ1 = λ10 + µ1 and when d > 0, σ0i =

λ0i0i+1 +λ0i1 +µ0i , for i = 0, . . . , d−1. In particular, for any t ≥ 0,
the transition probabilities P(X(t) = j|X(0) = i) can be recovered as
the ith, jth elements of the matrix exponential eGt. The Markov process is

further parameterised by νX :=
(
ν0 ν01 . . . ν0d

ν1 ν2

)>
with∑

j∈SX νj = 1, which defines the probability distribution of X(0) (the
starting state of the Markov chain) over the possible states and is referred
to as the initial probability mass of {X(t)}.

2.2 Modelling localisations from a fluorophore

The imaging procedure proceeds by sequentially exposing the fluorophore
over NF frames, each of length ∆. Following Patel et al. (2019), the
discrete time observed localisation process {Yn : n ∈ Z>0} takes values
in the set SY = {0, 1}, indicating either no observation or a localisation
of the fluorophore within the time interval [(n−1)∆, n∆). This observed
process is formally defined as

Yn = 1[δ,∆)

(∫ n∆

(n−1)∆
1{1}(X(t)) dt

)
,

where 1A(·) is the indicator function such that 1A(x) = 1 if x ∈ A

and is zero otherwise. This construction of {Yn} accounts for noise and
the imaging system’s limited sensitivity. A localisation of a molecule in
frame n is typically only recorded (Yn = 1) when its continuous time
process {X(t)} reaches and remains in the On state for long enough to be
detected. This minimum time is given by the unknown noise parameter
δ ∈ [0,∆).

The photo-switching hidden Markov model (PSHMM) is presented in
Patel et al. (2019) as a means of estimating the unknown parameters of the
continuous time Markov process {X(t)}. By collecting observations of
{Yn} from a known number of M individually identifiable fluorophores,
the transition rates, initial probability mass and noise parameter δ can be
estimated via a maximum likelihood procedure. In order to handle this
complicated stochastic structure and mitigate for missed state transitions,
the authors define transmission matrices B(0)

∆ , B
(1)
∆ ∈ R(d+3)×(d+3).

These characterise the probability of its hidden state and localizing a
fluorophore at the end of a frame given its state at the beginning of a frame.
These will play a key part in deriving the distribution for the number of
localisations. For i, j ∈ SX and l ∈ SY , its elements are defined by

B
(l)
∆ (i, j) := P(Y0 = l,X(∆) = j|X(0) = i),

B
(l)
∆ (2, 2) = 1{0}(l),

which are deterministic functions of the unknown photo-switching
parameters G and δ.

Crucially, as well as accounting for missed transitions, this set-up also
accounts for the random number of false positive localisations that occur
during an experiment. Specifically, ifα ∈ [0, 1] denotes the probability of
falsely observing a fluorophore in any given frame (assumed independent
of the observation process), then the updated transmission matrices take
the form

B
∗(0)
∆ = (1− α)B

(0)
∆

B
∗(1)
∆ = B

(1)
∆ + αB

(0)
∆ .

When incorporated into the model, α can also be estimated with the
PSHMM procedure in Patel et al. (2019). A procedure to compute
transmission matrices B∗(0)

∆ , B
∗(1)
∆ for any 0 ≤ α ≤ 1, adapted from

Patel et al. (2019), can be found in Algorithm 2 of the Supplementary
Information (SI).

2.3 Distribution of localisations

Given an unknown number of M independently fluorescing molecules,
each with localisation process {Yn,m} (m = 1, ...,M ), we now use this
model to characterise the distribution of

Nl =

M∑
m=1

NF∑
n=1

Yn,m, (2)

the cumulative number of localisations obtained over an experiment of
length NF frames. In order to do so, we will firstly explicitly derive
the density of Nl when M = 1 and explain how this can be used to
computationally recover the density for when M > 1. We will then use
this density, which will be seen as a function of M and the parameter set
θd := {G, δ,νX , α} to derive the posterior mass function of M given
Nl and θd, thereby constructing a suitable approach to estimating M via
its mode.

We define {Sn : n ∈ Z>0} to be the non-decreasing discrete time
series process denoting the cumulative number of localisations obtained
from a single fluorophore up to and including framen ≤ NF . This process
takes values in the set SSn = {0, 1, ..., n} and is formally defined as

Sn =

n∑
i=1

Yi,

where the sum is taken over the values Y1, . . . , Yn from the observed
localisation process {Yn}. Ultimately, we will be looking to find the
probability mass function for SNF

when imaging is conducted over a
known number of NF frames.

For any n ≥ 1, the following procedure is a method for computing
the probability mass function for Sn recursively. The proof of this result
is found in SI Section 1.1. Furthermore, when n = NF , an algorithm
specifying the relevant steps for its computational implementation is shown
in Algorithm 2.3.

Computing the probability mass function for Sn
• Fix the number of frames at n ≥ 1. For k ∈ SSn , define d + 3

dimensional vector

M(k, n) = (M(0, k, n), . . . ,M(0d, k, n),M(1, k, n),M(2, k, n))

whereby for each j ∈ SX

M(j, k, n) := Pθd (X(n∆) = j, Sn = k). (3)

• By recursively computing

M(k, 1) = ν>XB
∗(k)
∆ k ∈ {0, 1}

M(0, n) = M(0, n− 1)B
∗(0)
∆ n > 1

M(k, n) = M(k, n− 1)B
∗(0)
∆

+ M(k − 1, n− 1)B
∗(1)
∆ 1 ≤ k < n

M(n, n) = M(n− 1, n− 1)B
∗(1)
∆ k = n,

the probability mass function of Sn follows

pθd (Sn = k) := Pθd (Sn = k) = M(k, n)1d+3 k ∈ SSn .

(4)



“main” — 2021/3/10 — page 4 — #4

4 Patel et al.

Algorithm 1 Compute probability mass function (PMF) for SNF

function PMF_S(θd,∆, NF )
Compute B∗(0)

∆ and B∗(1)
∆ from θd,∆ . Via SI Algorithm 2

A0, A1 ← 0NF +10
>
d+3

A0[1, :]← ν>XB
∗(0)
∆

A0[2, :]← ν>XB
∗(1)
∆

for n = 2 to NF do
A1[1, :]← A0[1, :]B

∗(0)
∆

for k = 2 to n do
A1[k, :]← A0[k, :]B

∗(0)
∆ +A0[k − 1, :]B

∗(1)
∆

A1[n+ 1, :]← A0[n, :]B
∗(1)
∆

A0 ← A1

p← A01d+3 . p[i] = Pθd (SNF
= i− 1) for

i = 1, . . . , NF + 1

return p . Probability mass function for SNF

Figure 1b presents the exact distributions pθd (SNF
= k) for k ∈

Z≥0 when compared with histograms for the simulated data under three
photo-switching models, d = 0, 1, 2. The shape of the densities can be
seen to be determined by d, the dwell times in dark states and the photo-
bleaching rates. Moreover, as is to be expected, the average number of
localisations decreases as the number of dark states d increases.

In particular, the slow growth to the mode of each distribution is related
to the presence of the photo-bleached state, as seen in Figure 1c, which
compares the mass functions under the d = 1 model with µ0 = 0

when µ1 varies. When µ1 is close to zero (the expected time to move
into the bleached state is long), a bell shaped curve is observed. This
is sharply in contrast to when µ1 is large and photo-bleaching is much
more likely to occur at the beginning of the experiment, giving rise to a
geometric decay. For values in between, a mixture of these two properties is
detected. These simulations therefore provide strong evidence that photo-
kinetic models incorporating a photo-bleached state are likely to give rise
to mixture distributions (that are potentially multi-modal) for the number
of localisations recorded per molecule.

The moments of the distribution pθd (Sn = k) are fully characterised
by its probability generating function (pgf) GSn (z) = Eθd (zSn ), which
has a closed form expression and is given in SI Section 1.2. Using this,
the expected value of Sn, denoted Eθd (Sn) and variance Varθd (Sn),
proved in SI Section 1.3, is

Eθd (Sn) = νTX

[
n∑
i=1

eG∆(n−i)B
∗(1)
∆ eG∆(i−1)

]
1d+3 (5)

Varθd (Sn) = G′′Sn
(1) + Eθd (Sn)− E2

θd
(Sn). (6)

Here,

G′′Sn
(1) = ν>X

n−1∑
i=1

n−i∑
j=1

eG∆(n−i−j)B
∗(1)
∆ eG∆(j−1)B

∗(1)
∆ eG∆(i−1)

+

i∑
j=1

eG∆(n−i−1)B
∗(1)
∆ eG∆(i−j)B

∗(1)
∆ eG∆(j−1)

1d+3,

and eG denotes the matrix exponential of the generator G defined in (1).

1 0 01 02 0d

2

λ10

µ0

λ01

µ1

λ001

µ01

λ011

λ0102

µ02

λ021

µ0d

λ0d1

. . .

(a) General d+ 3 state (d ∈ Z≥0) model of a fluorophore.

(b) Density of pθd (SNF
) under

d = 0 (blue), d = 1 (red) and
d = 2 (green).

(c) Density of pθ1 (SNF
) with

d = 1, µ1 = 0.5 (blue), µ1 =
0.2 (red) and µ1 = 0.05 (green).

Fig. 1. Densities under different photo-switching models. Figure 1a shows the general
photo-kinetic model with transitions between an On state (1), d+ 1 temporary dark states
(0, 01, . . . , 0d) and a photo-bleached state (2). Figures 1b - 1c show the theoretical and
histogram estimate (from 106 simulations) of pθd

(SNF
= n) with µ1 > 0, µ0 =

· · · = µ0d
= 0, NF = 1000, ν0 = ν1 = 0.5, ∆ = 1

30
, δ = 10−3 and

α = 10−6; chosen rates: λ001
= 0.35, λ01 = 1, λ0102

= 0.2, λ011 = 0.3,
λ021 = 0.1, λ10 = 2.3, and µ1 = 0.05 (the remaining rates are set to zero).

When M independent molecules are imaged, the total number of
localisations Nl (which can take a minimum value of 0 and a maximum
value of MNF ) can be written as

Nl =

M∑
m=1

SNF ,m =

M∑
m=1

NF∑
n=1

Yn,m,

where SNF ,m denotes the total number of localisations made by themth
fluorophore over an experiment consisting ofNF frames. Specifically, the
density of Nl follows

pθd,M (Nl) =
∑

k1,...kM
:k1+···+kM=Nl

M∏
i=1

pθd (SNF
= ki), (7)

which can be readily obtained by applying M convolutions of the mass
function for SNF

. This is most efficiently achieved via the Fast Fourier
Transform (see SI Algorithm 3). The expected number and variance of total
localisations are Eθd,M (Nl) = MEθd (SNF

) and Varθd,M (Nl) =

MVarθd (SNF
), which can be computed using (5) and (6).

2.4 Inference

The task of interest is to estimate M , the unknown number of molecules
in a dSTORM experiment, fromNl, the number of localisations recorded
across NF frames. Our method first requires the use of training data to
obtain at estimate of the photoswitching parameters θd = {G, δ,νX , α}.
This training data consists of a set of observations of the localisation
process {Yn} from a known number of molecules. Here, we estimate
θd via the method of Patel et al. (2019), however other methods exist (e.g.
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Lin et al., 2015). Once an estimate for θd is obtained, inference onM can
proceed for the dSTORM experiment under analysis.

After plugging in the estimate for θd into pθd,m(Nl), the posterior
distribution of M given Nl localisations follows as

pθd,m(M = m|Nl) ∝ pθd,m(Nl)πM (m), (8)

whereπM (m) := P(M = m) denotes a suitable prior distribution onM .
We here elect to use a uniform prior restricted to Mmin ≤ m ≤ Mmax.
A discussion on choosing Mmin and Mmax can be found in SI Section
1.5. An efficient algorithm for computing pθd,m(Nl) can be found in SI
Algorithm 3. Subsequently, the estimate M̂ of the number of molecules is
found by locating the mode of the posterior pθd,m(M = m|Nl), known
as the maximum a posteriori (MAP).

Under this inference mechanism, 95% credible interval or highest
density region (HDR) (Hyndman, 1996) can also be obtained. The upper
and lower bounds of this credible interval inform us that M (under
this distribution) lies within this region with probability 0.95, and is
therefore a useful tool in analysing the potential number of molecules
that are truly imaged. Specifically, this region is chosen to be I = {m :

pθd,m(m|Nl) ≥ k0.05}, where k0.05 is the largest value such that

pI :=
∑
m∈I

pθd,m(M = m|Nl) ≥ 0.95.

We provide a detailed algorithm, which uses this method of inference to
obtain pθd,m(M = m|Nl) in SI Algorithm 4.

3 Implementation
We first validate our method on both simulated and an Alexa Fluor 647
dataset to demonstrate its precision and accuracy in molecular counting.
We then apply the method to infer the molecular density of the adapter
protein LAT on the surface of T cells during the formation of the
immunological synapse using experimental data acquired by dSTORM.

3.1 Validation with simulated data

Here we provide posterior estimates of M from nine simulation studies
highlighting slow, medium and fast switching scenarios under photo-
switching models with d, the number of dark states, equalling 0, 1 and 2.
For each simulation study, 104 independent datasets, each containing 350

molecules were simulated. From this, the localisations from 250 molecules
were used to estimate θd. The number of localisations from the remaining
100 molecules were used to estimate M through the posterior mode of
(8). The true parameter values for each study can be found in Table 1, and
in each case we use a uniform prior (πM (m) ∝ 1). Figure 3.1 shows
histograms of posterior modes M̂ under each study and show that our
estimation method can recover the true (M = 100) number of molecules
from simulated data.

Table 1. Global parameter values for the stimulation studies conducted in this
section.

Parameter d λ001 s λ01s λ0102 s λ011s λ021s λ10s µ1s ∆−1s−1 δs α ν0 ν1 M NF
Study

1 (SLOW) 0 0.3162 1 0.0333 30 0.0033 10−5 0.2 0.8 100 104

2 (MEDIUM) 0 1 3.162 0.1054 30 0.0033 10−5 0.2 0.8 100 104

3 (FAST) 0 3.162 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

4 (SLOW) 1 0.15 0.3 0.1 0.8 0.01 30 0.0033 10−5 0.2 0.8 100 104

5 (MEDIUM) 1 0.35 1 0.3 2.3 0.1 30 0.0033 10−5 0.2 0.8 100 104

6 (FAST) 1 2 10 0.7 10 0.333 30 0.0033 10−5 0.2 0.8 100 104

7 (SLOW) 2 0.15 0.3 0.05 0.1 0.001 0.8 0.05 30 0.0033 10−5 0.2 0.8 100 104

8 (MEDIUM) 2 0.8 4 0.1 0.4 0.005 8 0.1 30 0.0033 10−5 0.2 0.8 100 104

9 (FAST) 2 2 10 0.2 0.7 0.01 10 0.333 30 0.0033 10−5 0.2 0.8 100 104
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Fig. 2. Simulation results from studies 1-3 in Table 1. Histograms represent counts of
M̂ under the slow, medium and fast scenarios when d = 0, 1, 2 (top, middle and bottom
respectively), from 104 independently generated datasets withM = 100 andNF = 104 .
For each estimate, θd was determined using a training data set with M = 250 and
NF = 104 .

3.2 Validation with experimental data

The data analysed in this section is taken from Lin et al. (2015), in
which detailed methods can be found. The original study examined the
effect of laser intensity on the photo-switching rates of Alexa Fluor 647.
Across a total of 27 experiments, 8 different laser intensities using 2

different frame rates were explored (see Table 2 for details). In each
experiment, antibodies labelled with Alexa Fluor 647 at a ratio of 0.13-
0.3 dye molecules per antibody were imaged by total internal reflection
fluorescence (TIRF) microscopy. The photo-emission time trace of each
photo-switchable molecule detected was extracted. These were then used
to estimate the photo-switching rates.

Here, we use these data for the purpose of validating the theory and
counting method presented in this paper. In each experiment, the number of
fluorophores present is known and therefore acts as a ground truth against
which our estimate can be compared. For each dataset (labelled 1 - 27),
each photo-switchable molecule detected has its discrete observation trace
{Yn} extracted. 70% of these traces (the number of which we denote
Mtr) are then used to create a training set with which to identify model
parameters θd. The remaining 30% (the test set) are used to validate the
inference method outlined in this paper. Here, M (known) is the 30% of
molecules that remain, and Nl is the number of localisations recorded
from these M molecules. The d = 2 photo-kinetic model is chosen with
µ1 > 0, µ0 = µ01 = µ02 = 0, as reasoned in Patel et al. (2019).

For each experiment, the posterior modes (MAP values) M̂ givenNl,
along with the true values ofM and corresponding 95% credible intervals
are shown in Figure 3. With this are shown two examples of the posterior
distribution of M given Nl (see Equation (8)). The remaining figures can
be found in SI Figure S1. The values of the laser intensity, frame rate ∆−1,
number of molecules in each dataset (Mtr,M ), the number of frames over
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Table 2. A description of the Alexa Fluor 647 datasets, with reference to the
laser intensities in kW/cm2 and frames sampled per second (or ∆−1) measured
in s−1 used to characterise each of the 27 experiments. For each dataset, a
training set of size NF ×Mtr (train) was used to find the maximum likelihood
estimate θ2 via the PSHMM (estimated values shown). A hold out test set of
size NF ×Mte (test) was used in the posterior computations of M . The MAP
estimate M̂ , credible interval I and coverage pI is reported.

Dataset Laser ∆−1 Mtr M NF Nl M̂ I pI
intensity

1 1.0 200 192 81 49796 4340 77 [62, 91] 0.951
2 1.9 200 180 77 49533 5300 81 [67, 94] 0.950
3 3.9 200 234 100 49815 2443 106 [87, 125] 0.955
4 3.9 200 295 110 39758 2834 112 [94, 130] 0.956
5 7.8 200 238 102 39721 2679 106 [88, 123] 0.954
6 7.8 800 171 72 29418 4648 75 [63, 87] 0.953
7 7.8 800 159 67 29257 4251 66 [54, 77] 0.956
8 7.8 800 121 51 29438 2760 54 [43, 65] 0.961
9 16 800 304 129 29467 3538 126 [108, 144] 0.953
10 16 200 201 86 39703 1609 89 [73, 104] 0.953
11 16 800 213 90 29074 3309 88 [74, 101] 0.952
12 16 800 201 85 29145 2977 84 [71, 97] 0.951
13 31 800 425 181 29059 4050 177 [157, 197] 0.955
14 31 800 374 159 29778 2845 156 [137, 174] 0.954
15 31 800 360 153 29179 3431 156 [136, 175] 0.954
16 31 800 343 147 29400 3013 140 [122, 158] 0.957
17 31 800 317 135 29071 4616 137 [120, 153] 0.950
18 62 800 385 164 29327 3160 165 [147, 183] 0.955
19 62 800 309 132 29107 2728 132 [116, 148] 0.950
20 62 800 294 126 29551 1935 124 [107, 141] 0.956
21 62 800 298 127 29426 3022 132 [116, 148] 0.952
22 62 800 279 119 28989 2842 121 [106, 136] 0.951
23 97 800 315 135 29191 1579 136 [117, 154] 0.955
24 97 800 307 131 29198 1659 138 [120, 156] 0.955
25 97 800 304 129 29270 2120 132 [115, 148] 0.954
26 97 800 295 126 29295 2280 124 [107, 140] 0.953
27 97 800 287 123 29218 1351 126 [106, 145] 0.954

which they were imaged (NF ), the total number of localisations (Nl), the
posterior mode M̂ , its 95% credible interval (I) and its corresponding
value pI is summarised in Table 2. The maximum likelihood estimates θ̂2

used for each study is presented in SI Table S1.
The plots show that the modes of the posterior distributions (M̂ ) can

be used to accurately estimate the true number of imaged molecules,
with all studies’ 95% credible intervals containing the true values of M .
Furthermore, the inference method with d = 2, shows a consistently
strong performance, both in the MAP estimate and the width of the
credible intervals, across the range of laser intensities and frame rates.
This demonstrates the validity of our method across different experimental
conditions and photo-switching rates.

However, it is possible that the optimal number of states could,
theoretically, be different as the label density changes and the fluorophores
begin to photo-physically interact. While this effect is not well understood,
additional analysis successfully fits models d = 0, 1 with µ1 > 0, µ0 =

µ01 = 0 to this dataset. These results are shown in SI Figure S2 (with
the parameter estimates θ0,θ1 in SI Tables S2-S3), and highlight the
robustness of our counting procedure to different model specifications.

3.3 T cell study

We now utilise our method on a dSTORM experiment of the Linker of
Activation of T cells (LAT) (Balagopalan et al., 2015) in Jurkat cells.

LAT is a membrane-bound adapter protein with numerous binding
partners which is responsible for nucleating signalling complexes in
response to T cell receptor triggering. LAT forms oligomeric complexes by
binding of multiple signalling and adapter proteins; these complexes can
be observed as clusters at the immunological synapse by super-resolution
microscopy.

In this experiment, dSTORM images of diluted Alexa Fluor 647
conjugated antibodies absorbed onto glass were used for training.
Furthermore, to evaluate our method on test biological data,

Table 3. Maximum likelihood estimates θ̂2 via the PSHMM (Patel et al., 2019)
shown for the T-cell training dataset.

∆−1s−1 50
λ001 s 4.5314
λ01s 20.1769
λ0102 s 0.0207
λ011s 0.2668
λ021s 0.0059
λ10s 7.8302
µ0s 1.5317
δ
∆

0.5026
α 5.5119 ×10−7

νX (0.2293, 0.6201, 0.1460, 0.0046, 0)

immunological synapses were created between T-like Jurkat E6.1 cells
(ECACC 88042803) and antibody-coated glass, fixed, and immuno-
stained for LAT. Images were acquired in a pyranose oxidase based
imaging buffer (Swoboda et al., 2012; Olivier et al., 2013) (refer to SI
Section 6 for more details of the experimental methods).

The training dataset had Ntr = 22, NF = 5 × 104 and ∆−1 =

50s−1 and was utilised to determine the parameter θd. In order to perform
the model selection, for each d = 0, 1, 2, all sub-models of size 2d+2,
with µi ≥ 0 i ∈ SX of the model depicted in Figure 1a were fitted using
the PSHMM method of Patel et al. (2019) and the Bayesian Information
Criterion (BIC) computed. Finding the model yielding the lowest BIC
value resulted in d̂ = 2 and µ̂0 > 0, µ̂01 = µ̂02 = µ̂1 = 0. The
maximum likelihood estimated parameter θ̂2 calculated for this study is
provided in Table 3. Evaluating the generator matrix Ĝ and the initial
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Fig. 3. (a) Example posterior distributions ofMte given θ̂2 andNl for the Alexa FLuor
647 datasets 1 and 2 (descriptions of which can be found in Table 2) using the PSHMM
method. For each study, M̂ is given by the corresponding posterior mode plotted in cyan,
with the true values of Mte shown in magenta (dotted). 95% credible intervals for each
M̂ are shown in black (dotted). (b) Posterior estimates for the 27 Alexa Fluor 647 datasets
(descriptions of which can be found in SI Tables S1-S3) with varying laser intensities
(kw/cm2) under the PSHMM method.
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probability vector νX under the maximum likelihood estimate θ̂2, we
performed Monte-Carlo simulations of the corresponding continuous time
processX(t) to estimate the average number of times each emitter enters
the On state as 16.7492 with a standard deviation of 16.4563. We note here
that this is in strong agreement with the experimental study of Dempsey
et al. (2012), who acquire the number of blinks in a similar imaging buffer
to be 14. Using equation (4), the estimated distribution of the number
of localisations Nl from a single emitter under this parametrisation is
provided in Figure 4a.

Using θ2 = θ̂2 as the model parameter vector for the testing data, we
tested our method on two T-cell super-resolved datasets. In each image,
several 3×3µm sub-regions of the cell containing dense blinking activity
were analysed and molecular counting performed from the observed
localisation count in each region and θ2. Figure 4b shows the estimated
emitter density across the cells.

0 200 400 600 800 1000

Localisations

0

0.005

0.01

0.015

0.02

P
ro

b
a

b
ili

ty

AF647 distribution of localisations

Probability mass function

Mean =106.72

Standard deviation =107.98

(a) Estimated probability mass function of the
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molecule.

(b) Estimated fluorophore density across two T-cell like cells.

Fig. 4. T cell study: Figure 4a shows the distribution ofNl over 50000 frames and Figure 4b
shows the estimated fluorophore density using observed localisation counts in each region.
Blinking parameters θ2 = θ̂2 (see Table 3) were estimated from training data.

4 Discussion
We have derived the distribution of the number of localisations per
fluorophore and for an arbitrary number of fluorophores is a dSTORM
experiment. This has allowed us to present an inference procedure for
estimating the unknown number of fluorescent molecules, given an
observed number of localisations. These results have been successfully
validated on both simulated and experimental data across a range of
different imaging conditions, thus demonstrating a robust and precise new
tool for the quantification of biological structures and mechanisms imaged
via SMLM methods.

A comparison of performance between the counting method presented
here and the only existing dSTORM method of Nieuwenhuizen et al.

(2015) can be found in SI Section 4, where superior performance of
our method is reported. We caveat this with an acknowledgement that
the method of Nieuwenhuizen et al. (2015) is forced to assume a 3 state
(d = 0) model to attain a mixed Poisson-geometric distribution for the
number of localisations given M . In our procedure, we are able to fit all
3, 4 and 5 state (d = 0, 1, 2) models to the data, using a more bespoke
photo-switching model of a fluorophore as motivated by the analysis of
Patel et al. (2019). While it is reasonable to compare these two methods,
the discrepancies in the adopted model mean it is relegated to the SI. We
note that there are no other existing methods for fluorophore counting in
dSTORM when a model other than the 3 state (d = 0) one is assumed.

Our method achieves the counting of absolute fluorophore numbers,
however, the parameter of interest is typically the number of proteins within
the cell. There are a very wide range of sometimes competing reasons
why these might not be the same. These include incomplete labelling of
proteins by antibodies, or conversely multiple antibodies binding to one
protein, particularly if polyclonal antibodies are used. There may also not
be 1:1 fluorophore to antibody labelling and some fluorophores might have
bleached or degraded before the experiment begins; this may occur when
finding the cells of interest. While we believe if experiments are performed
carefully, the number of fluorophores can approximate the number of real
proteins relatively well, care should be taken in interpreting the outputs,
particularly if labelling or experimental parameters are varied between
conditions.

This method separates out the rate estimation (training) procedure
from the counting procedure. While the training procedure requires a
separate experiment to estimate fluorophore switching rates, it does mean
that the counting process is computationally cheap and therefore highly
scalable. This method can count several thousand fluorophores from tens of
thousands of localisations with relative computational ease. In the PALM
setting, Rollins et al. (2014) attempts to count and do rate estimation
simultaneously. While having a single procedure avoids the problem of a
separate training experiment, the computational burden of such a procedure
is extreme and drastically limits the numbers of fluorescent molecules that
can be counted at any one time. Furthermore, it requires careful extraction
of the time traces from crowded environments which is in itself problematic
and challenging.

In order to perform accurate counting, our method currently assumes
that the fluorophore blinking behaviour is uniform over the field of view and
also between the calibration and experimental samples. This assumption
may break down in specific circumstances. For example, it may be the case
that the illumination intensity is uneven across the imaged area. In the T-cell
study presented in this paper, we selected relatively small, central regions
where the illumination intensity should be relatively flat to minimise
this effect. New illumination configurations can achieve flat illumination
intensities over a wide area, which should further palliate this effect in
the future (Douglass et al., 2016). TIRF illumination also means that the
illumination intensity will be lower deeper into the sample and therefore,
if accuracy of counting is critical, we recommend the method is best used
for membrane proteins with approximately uniform depth. Finally, we
assume the calibration sample shows the same blinking behaviour as the
sample, and so, in future, the method will work most accurately with a
calibration which is part of the experiment, using for instance, isolated
monomeric fluorophores. However, it is also possible that label density
could affect fluorophore photophysics and cause differences, for example
between the calibration and experiment or between clusters or monomeric
molecules. A better understanding of dye photophysics and the influences
on it is therefore an important avenue for future study.

Since our method depends on the photo-switching parameters of
a fluorophore, it will be possible to experimentally optimise imaging
conditions for fluorophore counting. In dSTORM, the composition
of chemical buffers that are used to control the fluorophore blinking
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process can be optimised to maximise the image quality in terms of
measures such as resolution as measured by Fourier ring correlation
(Nieuwenhuizen et al., 2013). We therefore propose that it may be possible
to optimise buffers for use with our method to maximise the accuracy
of molecular counting. Our method will yield the best results when the
plug-in estimate of the parameter set θd is as accurate as possible. While
this largely depends on maximising the number of fluorophores sparsely
imaged in the training experiment, using buffers that promote slower
blinking scenarios relative to the frame rate and choosing frame rates that
viably maximise the images’ signal to noise ratio, have also been shown
to improve estimates of θd (Patel et al., 2019). We therefore suggest
that buffers should be selected carefully to balance counting accuracy,
resolution or other parameters depending on the specific scientific goals
of the application.

The counting procedure presented here relies on accurate spatio-
temporal measurements of fluorophores and therefore the imaging and
localisation steps should be optimised carefully. In fact, if two or
more fluorophores occupy the On state at the same time and are
within close enough proximity that their point spread functions (PSFs)
sufficiently overlap, then it could be that only a single localisation
is obtained or the localisation algorithm ignores them all together.
This phenomenon is discussed in detail and quantified in Cohen
et al. (2019). They relate the frequency at which this occurs to the
resolving capabilities of the algorithm used, the photo-kinetics of the
fluorophores, and the unknown density and spatial distribution of the
molecules being imaged. Incorporating this uncertainty in the density
and spatial distribution of the fluorophores into this counting procedure
is highly non-trivial and outside the scope of this paper. However,
recent optimisation strategies (Cohen et al., 2019; Diekmann et al., 2020)
suggest that a sparse imaging environment designed to minimise the
number of fluorophores simultaneously in the On state, and therefore
the number of PSFs per frame, can exponentially reduce this effect and
maximise data quality. Furthermore, recent developments in localisation
algorithms (e.g. Boyd et al., 2018) move ever closer to a satisfactory
solution to this multi-emitter problem.
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1 Proofs
In this section, we give detailed proofs of Propositions 1 and 2 of the
main text. Proposition 1 provides a method of computing the probability
mass function of Sn (defined in the main text), the cumulative number of
localisations produced by a single molecule acrossn frames. Proposition 2
details its first and second moments, which uses the result of its probability
generating function (pgf) derived in Lemma 1 of this supplement.

1.1 Proof of Proposition 1

Proof. Fix the number of frames at n ≥ 1. Let M be as defined in
equation (5) of the main text.
Specifically, for k ∈ SSn , define d+ 3 dimensional vector

M(k, n) = (M(0, k, n), . . . ,M(0d, k, n), . . .

M(1, k, n),M(2, k, n)),

whereby for each j ∈ SX

M(j, k, n) := Pθd (X(n∆) = j, Sn = k).

Initializing with n = 1, we have (for k ∈ {0, 1}) that

M(j, k, 1) =
∑
i∈SX

Pθd (X(∆) = j, Y0 = k| . . .

X(0) = i)Pθd (X(0) = i)

=
∑
i∈SX

B
∗(k)
∆ (i, j)Pθd (X(0) = i).

=⇒ M(k, 1) = ν>XB
∗(k)
∆ .

For arbitrary n > 1, and for k = 0 we have

M(j, 0, n) =
∑
i∈SX

Pθd (X(n∆) = j, Sn = 0| . . .

X((n− 1)∆) = i, Sn−1 = 0)M(i, 0, n− 1)

=
∑
i∈SX

B
∗(0)
∆ (i, j)M(i, 0, n− 1).

=⇒ M(0, n) = M(0, n− 1)B
∗(0)
∆ .

For 1 ≤ k < n we have

M(j, k, n) =
n∑

x=k−1

∑
i∈SX

Pθd (X(n∆) = j, Sn = k| . . .

X((n− 1)∆) = i, Sn−1 = x)M(i, k − x, n− 1)

=
1∑
x=0

∑
i∈SX

B
∗(x)
∆ (i, j)M(i, k − x, n− 1).

=⇒ M(k, n) = M(k, n− 1)B
∗(0)
∆ + M(k − 1, n− 1)B

∗(1)
∆ .

And finally for k = n, we have

M(j, n, n) =
∑
i∈SX

Pθd (X(n∆) = j, Sn = n| . . .

X((n− 1)∆) = i, Sn−1 = n− 1)

M(i, n− 1, n− 1)

=
∑
i∈SX

B
∗(1)
∆ (i, j)M(i, n− 1, n− 1).

=⇒ M(n, n) = M(n− 1, n− 1)B
∗(1)
∆ .

Now since

Pθd (Sn = k) =
∑
j∈SX

Pθd (X(n∆) = j, Sn = k),

we obtain

pθd (Sn = k) := Pθd (Sn = k) = M(k, n)1d+3 k ∈ SSn .

1.2 Probability generating function (pgf)

In order to prove Proposition 2 of the main text, we need a preliminary
lemma which derives the probability generating function (pgf) of Sn for
n ∈ Z>0, since this result will be used in the main proof.

Lemma 1. For any n ∈ Z>0, the probability generating function (pgf)
of Sn, GSn (z) = Eθd (zSn ) is given by

GSn (z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n1d+3. (1)

Proof. By defining the vector quantity GSn (z) :=
∑n
i=0 M(i, n)zi,

we have GSn (z) = GSn (z)1d+3. We therefore need to equivalently

show that GSn (z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n.

The statement in (1) is true for n = 1, since

GS1
(z) = P(S1 = 0) + zP(S1 = 1)

= (ν>XB
∗(0)
∆ + zν>XB

∗(1)
∆ )1d+3

= ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )1d+3.

Assuming that (1) is true for n = k, consider n = k + 1:

GSk+1
(z) =

k+1∑
i=0

P(Sk+1 = i)zi

=

(
k+1∑
i=0

M(i, k + 1)zi

)
1d+3

=

(
M(0, k)B

∗(0)
∆ +

(
k∑
i=1

(M(i, k)B
∗(0)
∆

+M(i− 1, k)B
∗(1)
∆ )zi

)
+ M(k, k)B

∗(1)
∆ zk+1

)
1d+3

=

((
k∑
i=0

M(i, k)zi

)
B
∗(0)
∆

+z

(
k∑
i=0

M(i, k)zi

)
B
∗(1)
∆

)
1d+3

= GSk (z)(B
∗(0)
∆ + zB

∗(1)
∆ )1d+3

= ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )k+11d+3.

1.3 Proof of Proposition 2

Proof. The expected value of Sn, denoted Eθd (Sn) = G′Sn (1) and
varianceVarθd (Sn) = G′′Sn (1)+Eθd (Sn)−E2

θd
(Sn) can be explicitly

determined by differentiating the pgf in (1) from first principles.
In the following, we utilise the following expansion

(Cz + hB
(1)
∆ )n = Cnz + hCn−1

z B
(1)
∆ + hCn−2

z B
(1)
∆ Cz + . . .

+ hB
(1)
∆ Cn−1

z +O(h2),

which holds for the two square matrices Cz and B(1)
∆ .
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From the definition of a derivative, we have

GSn (z) = ν>X(B
∗(0)
∆ + zB

∗(1)
∆ )n1d+3.

dGSn
dz

= lim
dz→0

1

dz

[
νTX(B

∗(0)
∆ + (z + dz)B

∗(1)
∆ )n1d+3

−νTXC
n
z 1d+3

]
= νTX lim

dz→0

(B
∗(0)
∆ + (z + dz)B

∗(1)
∆ )n − Cnz

dz
1d+3

= νTX lim
dz→0

(Cz + dzB
∗(1)
∆ )n − Cnz
dz

1d+3

= νTX lim
dz→0

1

dz

[
Cnz + Cn−1

z dzB
∗(1)
∆ + Cn−2

z dzB
∗(1)
∆ Cz

+ · · · − Cnz ] 1d+3

= νTX

[
Cn−1
z B

∗(1)
∆ + Cn−2

z B
∗(1)
∆ Cz + Cn−3

z B
∗(1)
∆ C2

z

+ · · ·+ CzB
∗(1)
∆ Cn−2

z +B
∗(1)
∆ Cn−1

z

]
1d+3

≡ νTX

[
n∑
i=1

Cn−iz B
∗(1)
∆ Ci−1

z

]
1d+3,

defining Cz := B
∗(0)
∆ + zB

∗(1)
∆ .

When z = 1, C1 = B
∗(0)
∆ +B

∗(1)
∆ = eG∆, giving

Eθd (Sn) = νTX

[
n∑
i=1

eG∆(n−i)B
∗(1)
∆ eG∆(i−1)

]
1d+3.

Defining D :=
∑n−1
j=1 C

n−1−j
z B

∗(1)
∆ Cj−1

z , we can now derive
G′′Sn (1) as follows

d2GSn
dz2

= νTX lim
dz→0

1

dz

n∑
i=1

[
Cn−iz+dzB

∗(1)
∆ Ci−1

z+dz−

Cn−iz B
∗(1)
∆ Ci−1

z

]
1d+3

= νTX

[
DB
∗(1)
∆ + lim

dz→0

1

dz

n−1∑
i=2

Cn−iz+dzB
∗(1)
∆ Ci−1

z+dz

−Cn−iz B
∗(1)
∆ Ci−1

z +B
∗(1)
∆ D

]
1d+3

= νTX

DB∗(1)
∆ +

n−1∑
i=2

n−i∑
j=1

C
n−(i+j)
z B

∗(1)
∆ Cj−1

z B
∗(1)
∆ Ci−1

z

+

i∑
k=2

Cn−iz B
∗(1)
∆ Ci−kz B

∗(1)
∆ Ck−2

z

)
+B

∗(1)
∆ D

]
1d+3.

This gives

G′′Sn (1) = νTX

n−1∑
i=1

n−i∑
j=1

eG∆(n−i−j)B
∗(1)
∆ eG∆(j−1)B

∗(1)
∆ eG∆(i−1)

+
i∑

j=1

eG∆(n−i−1)B
∗(1)
∆ eG∆(i−j)B

∗(1)
∆ eG∆(j−1)

1d+3,

so that Eθd (S2
n) = G′′Sn (1) + Eθd (Sn) and therefore Varθd (Sn) =

G′′Sn (1) + Eθd (Sn)− E2
θd

(Sn).

1.4 Deriving the probability distribution of the total number
of localisations

In the main text (see equation (2), we define the total number of
localisations Nl detected from M fluorophores during an experiment
(consisting of NF frames) to be

Nl =

M∑
m=1

SNF ,m,

where SNF ,m denotes the cumulative number of localisations made by
the mth fluorophore. The distribution SNF (for a single fluorophore)
is carefully derived in Proposition 1 of the main text, with Algorithm 1
providing the user with a scheme to computationally compute it given
photo-switching parameters θd. Here, we describe how this can now be
used to recover the probability mass function for Nl, given M .

Firstly, for any u ∈ R, we define the characteristic function γSNF (u)

of the random variable SNF to be

γSNF
(u) := Eθd (eiuSNF ) =

∞∑
s=0

Pθd (SNF = s)eius

=

NF∑
s=0

pθd (SNF = s)eius,

where i =
√
−1. The characteristic function for Nl =

∑M
m=1 SNF ,m

is then

Eθd,M (eiuNl ) = Eθd,M

(
e
iu
(
SNF ,1

+···+SNF ,M
))

= Eθd,M

(
eiuSNF ,1 . . . eiuSNF ,M

)
=

M∏
m=1

Eθd

(
eiuSNF ,m

)
= γMSNF

(u) (2)

For any N ≥ 0, we can define tN := 2π
N+1

and uN = −tNk, where k
can take any value in the set {0, . . . , N}. When N = NF , this enables

Fs→k(pθd (SNF )) := γSNF
(−uNF ) =

NF∑
s=0

pθd (SNF = s)e−itNF
ks

to be seen as the Discrete Fourier Transform (DFT) of the probability mass
pθd (SNF = s), where Fs→k(·) denotes the discrete Fourier operator.
The inverse DFT can then recover the probabilities via

F−1
k→s(γSNF

(−tNF k)) =
1

NF + 1

NF∑
k=0

γSNF
(−tNF k)eitNF

ks

≡ pθd (SNF = s).

Using the characteristic function of Nl from (2), it now follows that
probability mass pθd,M (Nl = s) := Pθd,M (Nl = s) (where Nl takes
values in the set {0, . . . ,MNF }), can be recovered via

pθd,M (Nl = s) =
1

MNF + 1

MNF∑
k=0

γMSNF

(
−tMNF k

)
eitMNF

ks,

(3)
so that pθd,M (Nl = s) = F−1

k→s(γ
M
SNF

(−tMNF k)) =

F−1
k→s(F

M
s→k(pθd (SNF ))). It should be noted here that a computational

implementation would require one to apply the DFT to the MNF +



“supplement” — 2021/1/28 — page 4 — #4

4 Patel et al.

1 vector of probabilities p, whose (s + 1)th element is defined as
pθd (SNF = s). The first NF + 1 elements of p are therefore those
outputted by Algorithm 1 of the main text and the remainingNF (M −1)

elements are zeros. Algorithm 3 of this supplement provides the user with a
scheme to compute the probability distribution ofNl using this reasoning.

1.5 Deriving the posterior distribution of M

In the main text (see equation (8), we define the posterior distribution of
M given the number of observed localisations Nl in test data Dte =

{Nl,∆, NF } and θd the set of photo-switching parameters learned from
training data Dtr . For simplicity, we redefine this distribution here.
Specifically,

pθd,m(M = m|Nl) ∝ pθd,m(Nl)πM (m) Mmin ≤ m ≤Mmax,

(4)

where πM (m) := P(M = m) for Mmin ≤ m ≤ Mmax denotes a

suitable prior distribution on M . We choose Mmin = max
(⌈ Nl

NF

⌉
, 1
)

and while it should be clear that Mmax = ∞, one may choose
to pre-specify a large value for Mmax to avoid unnecessarily large
computations. For example, we let m̂ =

⌈ Nl
Eθd

(SNF
)

⌉
andMmax = m̂+⌈

4
√
m̂Varθd (SNF )

⌉
and consider the range [Mmin,Mmax) suitable for

inference. Here, Eθd (SNF ) and Varθd (SNF ) can be computed using
equations (4) and (5) of the main text. For the studies conducted in the
main text, we chose Mmin and Mmax using this reasoning. For a given
prior distribution πM , Algorithm 4 computes pθd,m(M = m|Nl) using
this described method.

2 Algorithms
In this section, we provide two additional algorithms to supplement the
material presented in the main text of this paper. First, Algorithm 2 presents
the algorithm to compute transmission matrices B∗(0)

∆ and B∗(1)
∆ given

any parameter set θd, as defined in the main text. This algorithm has
been taken from Patel et al. (2019), and presented here for convenience.
Second, we provide an algorithm to compute the probability mass function
(distribution) of the total number of localisationsNl as is described in the
main text and in equation (3) of this supplement.

A small note on the notation used in Algorithm 2. We denote 0n and
1n to be the n × 1 vectors of zeros and ones respectively and In to
be the n × n identity matrix. Moreover, epn denotes the pth canonical
(standard) basis vector of Rn. We denote A[i1 : i2, j1 : j2] to be the
matrix filled with rows i1 to i2 and columns j1 to j2 of any matrix A,
and A[i1, j1] to be the (i1, j1)th entry of A. We use the � notation
to denote the Hadamard (element wise) product between two matrices.
Moreover, the Laplace transform of a scalar-valued function qij(k, t)
with respect to its arguments i, j ∈ Z>0,k ∈ Rn and t ≥ 0, is defined as
Lt→s[qij(k, t)](s) =: fij(k, s) =

∫∞
0 e−stqij(k, t)dt. The Laplace

operator on a matrix-valued function is applied element wise to create a
matrix output of the same dimension as the input.

Algorithm 2 Compute transmission matrices B∗(0)
∆ and B∗(1)

∆

1: function COMPUTE_TRANSMISSION_MATRICES(θd,∆)
2: Compute G from θd using equation (1) of the main text
3: GS,R0 ← 0d+20>d+2

4: GS ← G[1 : d+ 2, 1 : d+ 2] . To avoid
numerical overflow in the computation of inverse Laplace transforms,
one can (for some small tolerance ε > 0), replace all such (G)p,p with
(G)q,q , when |(G)p,p − (G)q,q | < ε; p 6= q = 1, . . . , d+ 2.

5: µ← G[1 : d+ 2, d+ 3]

6: σ1 ← −G[d+ 2, d+ 2]

7: σ ← −diag(G[1 : d+ 1, 1 : d+ 1])

8: for i = 1 to d+ 1 do
9: GS,R0 [i, d+ 2]← GS [i, d+ 2]

10: GS,R̄0 ← GS −GS,R0

11:
12: . //Compute initializations for transmission matrices

13: A1 ←
[
−G>

S,R̄0 Id+2

0d+20>d+2 −G
>
S,R̄0

]

14: A2 ←
[

GS,R̄0 Id+2

0d+20>d+2 0d+20>d+2

]

15: A←
[

A1 02(d+2)0
>
2(d+2)

02(d+2)0
>
2(d+2)

A2

]
16: Q0

∆(0)← e
G
S,R̄0∆

17: Q̄0
∆(0)← eA∆[i1 : i2, i2 + 1 : i3]µ .

i1 = 2d+ 5, i2 = 3(d+ 2) and i3 = 4(d+ 2)

18: c← 1−e−σ1δ

1−e−σ1∆

19: Ξ0
∆(0)←

[
1d+11>d+1 c1d+1

]>
20: Ξ1

∆(0)← 1d+21>d+1 − Ξ0
∆(0)

21: Ξ̄0
∆(0)←

[
1>d+1 c

]>
22: Ξ̄1

∆(0)← 1d+2 − Ξ̄0
∆(0)

23: B
(0)
∆ ←

[
(Q0

∆(0))(1:d+2),(1:d+1) � Ξ0
∆(0) 0d+2 Q̄0

∆(0)� Ξ̄0
∆(0)

0>d+1 0 1

]

24: B
(1)
∆ ←

[
(Q0

∆(0))(1:d+2),(1:d+1) � Ξ1
∆(0) [0>d+1 e−σ1∆)> Q̄0

∆(0)� Ξ̄1
∆(0)

0>d+1 0 0

]
25: k ← 1 . //Start convergence of transmission matrices via

computations of different k
26: while B(0)

∆ and B(1)
∆ have not converged do

27: Q0
∆(k) ← L−1

s [(sId+2 −GS,R̄0 )−1
(
GS,R0 (sId+2 −GS,R̄0 )−1

)k
](∆)

. Compute inverse Laplace transform matrix
28: Q̄0

∆(k)←
(∫∆

0 Q0
s(k)ds

)
µ

29: for i = 1 to d+ 1 do
30: for j = 1 to d+ 1 do
31: . Υ ∼ Erlang(k, σ1) and FΥ(u, k, σ1) = P(Υ ≤ u)

32: Ξ0
∆(k)[i, j], Ξ̄0

∆(k)[i]← FΥ(δ,k,σ1)
FΥ(∆,k,σ1)

33: Ξ1
∆(k)[i, j]← 1− (Ξ0

∆(k))[i, j]

34: Ξ̄1
∆(k)[i]← 1− Ξ̄0

∆(k)[i]

35: Ξ0
∆(k)[d+ 2, j], Ξ̄0

∆(k)[d+ 2]← FΥ(δ,k+1,σ1)
FΥ(∆,k+1,σ1)

36: Ξ1
∆(k)[d+ 2, j]← 1− Ξ0

∆(k)[d+ 2, j]

37: Ξ̄1
∆(k)[d+ 2]← 1− Ξ̄0

∆(k)[d+ 2]

38: B
(0)
∆ ← B

(0)
∆ +

[
Q0

∆(k)[1 : d+ 2, 1 : d+ 1]� Ξ0
∆(k) 0d+2 Q̄0

∆(k)� Ξ̄0
∆(k)

0>d+1 0 0

]

39: B
(1)
∆ ← B

(1)
∆ +

[
Q0

∆(k)[1 : d+ 2, 1 : d+ 1]� Ξ1
∆(k) 0d+1 Q̄0

∆(k)� Ξ̄1
∆(k)

0>d+1 0 0

]
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40: for i = 1 to d+ 2 do
41: Find all vectors k =

(
k0 k1 . . . kd

)>
that belong to

the set C0i−1

k .

C0i−1

k :=
{
k : k>1d+1 = k, λi−1 > 0, k0 ≥ . . . ≥ λi−1 − 1 ≥ . . . ≥ kd − 1

}
42: C0d+1

k ← C0
k

43: For each k, f0i−11(k, s) ←
λ10
s+σ1

∑d
p=0

λ0p1
∏p−1
q=0 λ0q0q+1∏p

q=0(s+σ0q )
f0i−11

(
k−

∑p
r=0 er+1

d+1, s
)

. Compute f0i−11(k, s) recursively via the initializations

f0i−11(0d+1, s) =
1{d+2}(i)

s+σ1
, f0p1(ep+1

d+1, s) =
λ0p1

(s+σ0p )(s+σ1)

for p = 0, . . . , d, and f0d+11(e1
d+1, s) = λ10λ01

(s+σ0)(s+σ1)2
.

44: For each k, compute q1
0i−11(k,∆) =

L−1
s (f0i−11(k, s))(∆) . Compute inverse Laplace transforms

45: ξ1
0i−11(0,k,∆)← FΦ(∆|k,σ)−FΦ(∆−δ|k,σ)

FΦ(∆|k,σ)
.

FΦ(φ|k,σ) = P(Φ ≤ φ), where Φ =
∑m
p=0Wp, Wp

indep∼
Erlang(kp, σ0p )

46: ξ1
0d+11(0,k,∆)← ξ1

01(0,k,∆)

47:
48: B

(0)
∆ [i, d + 2] ← B

(0)
∆ [i, d + 2] +∑

k∈C
0i−1
k

q1
0i−11(k,∆)ξ1

0i−11(0,k,∆)

49:
50: B

(1)
∆ [i, d + 2] ← B

(1)
∆ [i, d + 2] +∑

k∈C
0i−1
k

q1
0i−11(k,∆)(1− ξ1

0i−11(0,k,∆))

51: k ← k + 1

52:
53: . //Include the addition of false positives to transmission matrices
54: B

∗(0)
∆ ← (1− α)B

(0)
∆

55: B
∗(1)
∆ ← B

(1)
∆ + αB

(0)
∆

56: return B∗(0)
∆ , B

∗(1)
∆ . Output transmission Matrices

Algorithm 3 Compute probability mass function (PMF) for Nl from M

fluorophores

1: function PMF_Nl(p1,M ) . p1 ← PMF_S(θd, NF ) from
Algorithm 1 of the main text

2: p2 ← [p>1 0>
NF (M−1)

]>

3: f ← F(p2) . Apply Discrete Fourier Transform (DFT) to p2 to
get f

4: fM ← fM . fM [i] = f [i]M for i = 1, . . . ,MNF + 1

5: p← F−1(fM ) . Apply inverse DFT to fM to get p, where
p[i] = Pθd,M (Nl = i− 1) for i = 1, . . . ,MNF + 1

6: return p . Probability mass function for Nl

Algorithm 4 Compute posterior distribution pθd,m(M = m|Nl)
function Compute_posterior(Dtr,Dte, πM )

Use Dtr to obtain θd . E.g. via the method in Patel et al. (2019)
p← PMF_S(θd,∆, NF ) . From Algorithm 1 of the main text
Compute Eθd (SNF ),Varθd (SNF ) . From [4] and [5] of the main

text
Mmin ← max

(⌈ Nl
NF

⌉
, 1
)

m̂←
⌈ Nl
Eθd

(SNF
)

⌉
Mmax ← m̂+

⌈
4
√
m̂Varθd (SNF )

⌉
p∗ ← 0Mmax

for i = Mmin to Mmax do
p2 ← PMF_NL(p, i) . From Algorithm 3
p∗[i]← p2[Nl + 1]πM (i)

p∗ ← p∗

p∗1Mmax
. Normalize probabilities

return p∗ . p∗[m] = Pθd,m(M = m|Nl)

3 Figures
In this section, we provide the posterior distributions ofM givenNl from
the Alexa Fluor 647 datasets studied in the “Validation with experimental
data” section of the main text. Specifically, Figure S1 shows the posterior
distributions of M given Nl with d = 2, as this provided the best fit,
along with the true values and MAP estimates from the 27 experiments.
Moreover, each distribution’s 95% credible interval (under a uniform prior
on M ) is given.
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Fig. S1. Posterior distributions of Mte given θ̂2 when d = 2 and Nl for the 27 Alexa
Fluor 647 datasets (descriptions of which can be found in Tables S3-S1). For each study,
M̂ is given by the corresponding posterior mode plotted in cyan, with the true values of
Mte shown in magenta (dotted). 95% credible intervals for each M̂ are shown in black
(dotted).

4 Comparative analysis
The results from Alexa Fluor 647 datasets (when d = 2), used to validate
the molecular counting method presented in Section 3.1 of the main text
are here compared with models d = 0, 1 and the mixed Poisson-geometric
method described in Nieuwenhuizen et al. (2015).

The method of Nieuwenhuizen et al. (2015) utilises a derived Poisson-
geometric mixture distribution for the number number of activations per
fluorophore over a continuous time interval. This model is parameterised
by transition rates from a 3-state (d = 0) model that accounts for a
photon emitting On state, a non-photon emitting dark state and a bleached
state of which the transitions between states are Poisson distributed. We
note here that this is analogous to the d = 0 continuous time Markov
process {X(t)}, defined in Figure 1 of the main text of this article.
From this, the derived distribution of activations are subsequently used
to model the number of localisations produced by each molecule over the
video. Specifically, given θ0 = {λ01, λ10, µ0, µ1} the probability mass

function of the number of blinks St over time t ∈ R is derived as

pθ0
(St = b) =

(
1−

λbl

λsw

)b (λswt)b

b!
exp(−λswt)

+
λbl

λsw

(
1−

λbl

λsw

)b−1 ∞∑
n=b

(λswt)n

n!
exp(−λswt),

(5)

where

λsw =
λ0λ1

λ0 + λ1
λbl =

λ01µ1 + λ10µ0 + µ0µ1

λ0 + λ1
,

with λ0 = λ01 + µ0 and λ1 = λ10 + µ1.
While this model does not account for the discrete time imaging

procedure, δ, νX or random false positive rate α introduced from our
model in the main text, the authors of Nieuwenhuizen et al. (2015)
recognize that using pθ0

(St = b) in (5) may lead to biases in counting
localisations due to quick transitions and blinking overlap between
spatially close molecules. To circumvent this, the authors define Ploc,
the probability of obtaining a localisation once a molecule reaches the
On state, leading to an alternative representation whereby λbl

λsw
→

λbl
λswPloc+λbl(1−Ploc)

and λswt→ Plocλswt.
In order to test the Alexa Fluor 647 datasets that we validated our

method on in Section 3.1 of the main text, we first fitted the PSHMM
maximum likelihood estimation procedure of Patel et al. (2019) to the
same training data using the d = 0 model, with µ0 = 0 and µ1 > 0, as
is also used for the PSHMM analysis for this dataset when d = 0. Using
θ0 (parameter values given in Table S3), we then calculated the form of
pθ0

(St = b) both in (5) and with the inclusion of Ploc in the above,
with t = NF∆ for each dataset. In the latter, we determined Ploc using
Ploc = exp(−λ̂1δ̂), as this gives the probability that each transition to
the On state results in a holding time of at least δ seconds, sufficient for
a localisation of the fluorophore. We then used Algorithms 3 and 4 with
both forms of pθ0

(St = b) to estimate the posterior modes M and their
respective 95% credible intervals. Unfortunately, the inclusion of Ploc
resulted in much poorer and biased estimates of M for each dataset. For
this reason, we have chosen to only present the estimates gained by using
the original form of pθ0

(St = b) given in (5).
In order to investigate our method under models d = 0, 1 (i.e. the

models not chosen by the model selection procedure for this validation
dataset) from our method, Figure S2 shows posterior estimates of M for
d = 0, 1, 2 (PSHMM) and that of Nieuwenhuizen et al. (2015). The plots
show that the modes of the posterior distributions (M̂ ) from the PSHMM
method can be used to accurately estimate the true number of imaged
molecules, with in comparison to the method of Nieuwenhuizen et al.
(2015), highlights that all studies’ 95% credible intervals containing the
true values of M , for all models d = 0, 1, 2. Although the method of
Nieuwenhuizen et al. (2015) is only suitable for datasets with d = 0

multiple off states, this method is seen to consistently overestimate
the number of imaged molecules, especially for those at higher laser
intensities. On the other hand, comparing the different model fits under
the PSHMM method, we find that the average bias from the three models
are 7.11, 3.48, 3 for d = 0, 1, 2 respectively, thereby corroborating the
findings of Lin et al. (2015); Patel et al. (2019). Our analyses demonstrate
the robustness our method has to different experimental conditions,
photo-switching rates and model misspecification.
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Fig. S2. Posterior estimates ofMte given θ̂2 andNl for the 27 Alexa FLuor 647 datasets
(descriptions of which can be found in Table S1) with varying laser intensities (kw/cm2)
under the PSHMM method with d = 0 (gray, dash dotted), d = 1 (blue, dotted), d = 2

(black) and the negative binomial method described in Nieuwenhuizen et al. (2015) (cyan).
For each study, M̂ is given by the corresponding posterior mode plotted as crosses, with
the true values of Mte shown in red and 95% credible intervals for each M̂ under both
methods are shown by error bars.

5 Tables
In this Section, we provide three Tables to detail the imaging parameters
θ0, θ1, θ2 used when deriving the posterior distribution of Mte given
θ0, θ1, θ2, under models d = 0, 1, 2 for the 27 Alexa Fluor 647 datasets
studied. As explained, for each study, a training set of size NF ×Mtr

from the whole dataset was used to determine θ2, θ1, θ0 via the PSHMM
method Patel et al. (2019). Tables S1-S3 provide the number of each study,
the Laser intensity used, ∆,Mtr ,Mte,NF and the maximum likelihood
parameter estimates in θ2, θ1 and θ0, respectively.

6 Experimental methods for T-cell study
In the T-cell experiments for which the molecular counting method was
tested, the cells were maintained in RPMI supplemented with 10%
fetal bovine serum, and L-glutamine. Glass-bottomed chamber slides
(#1.5 glass, ibidi µSlides) were coated with a mixture of anti-CD3
(eBioscience clone OKT3, 16-0037-81 at 2 µg per ml) and anti-CD28
(RnD Systems, clone CD28.2, 16-0289-85 at 5 µg per ml) monoclonal
antibodies overnight at 4◦C. The antibody solution was removed and the
glass gently rinsed three times in PBS before use.

For the testing data, Jurkat E6.1 cells were introduced to antibody-
coated glass surfaces at a density of 50 × 103 cells per cm2 in warm
HBSS and incubated at 37◦C for 5 minutes to allow for synapse formation.
The cell suspension was then removed and the chamber wells washed
with warm HBSS to remove any non-adhered cells. Surface-attached cells
were then fixed in 3% paraformaldehyde in Tris-buffered saline (TBS) for
20 minutes at 37◦C. Fixed cells were then washed three times in TBS
at room temperature; the remaining steps are also at room temperature
unless specified. The sample was then permeabilised with 0.01% (w/v)
lysolecithin (Sigma L4129) in TBS for 10 minutes, followed by two TBS

Table S1. A description of the Alexa Fluor 647 datasets, with reference to the
laser intensities in kW/cm2 and frames sampled per second (or ∆−1) measured
in s−1 used to characterise each of the 27 experiments. For each dataset, a
training set of size NF ×Mtr (train) was used to find the maximum likelihood
estimate θ2 via the PSHMM (estimated values shown) with d = 2. A hold out
test set of size NF ×Mte (test) was used in the posterior computations of M .

Dataset Laser ∆−1 Mtr Mte NF λ001 λ01 λ0102 λ011 λ021 λ10 µ1
δ
∆

α νX
intensity × × × ×10 ×104 × ×102 ×105

∆ ∆ ∆ ×∆ ×∆ ∆ ×∆

1 1.0 200 192 81 49796 0.10 0.55 0.01 0.22 1.24 0.65 1.04 0.78 1.48 (0.21, 0.00, 0.65, 0.13, 0)
2 1.9 200 180 77 49533 0.23 0.73 0.02 0.46 1.43 0.92 1.37 0.32 1.13 (0.00, 0.46, 0.34, 0.20, 0)
3 3.9 200 234 100 49815 0.12 0.46 0.02 0.21 0.58 0.55 2.44 0.65 0.80 (0.10, 0.07, 0.70, 0.13, 0)
4 3.9 200 295 110 39758 0.28 0.67 0.03 0.42 1.22 0.55 2.53 0.69 0.98 (0.02, 0.12, 0.61, 0.24, 0)
5 7.8 200 238 102 39721 0.14 0.39 0.02 0.14 1.42 0.55 2.98 0.57 0.27 (0.10, 0.06, 0.72, 0.12, 0)
6 7.8 800 171 72 29418 0.03 0.15 1.35 6.08 1.39 0.52 0.65 0.56 1.17 (0.52, 0.00, 0.00, 0.47, 0)
7 7.8 800 159 67 29257 0.25 0.58 0.02 0.47 1.12 0.81 0.61 0.37 1.60 (0.50, 0.03, 0.00, 0.47, 0)
8 7.8 800 121 51 29438 0.13 0.40 0.01 0.23 0.68 0.54 0.00 0.66 0.09 (0.71, 0.00, 0.00, 0.29, 0)
9 16 800 304 129 29467 0.38 0.70 0.02 0.57 0.81 0.59 1.18 0.77 0.72 (0.23, 0.03, 0.00, 0.74, 0)

10 16 200 201 86 39703 0.19 0.42 0.01 0.08 1.25 0.57 3.10 0.73 0.83 (0.00, 0.01, 0.46, 0.53, 0)
11 16 800 213 90 29074 0.21 0.46 0.03 0.37 0.73 0.54 0.00 0.64 0.48 (0.54, 0.00, 0.00, 0.46, 0)
12 16 800 201 85 29145 0.12 0.35 0.02 0.19 0.72 0.57 0.00 0.61 0.00 (0.13, 0.00, 0.00, 0.87, 0)
13 31 800 425 181 29059 0.21 0.41 0.03 0.28 0.75 0.58 0.01 0.72 0.93 (0.33, 0.07, 0.04, 0.56, 0)
14 31 800 374 159 29778 0.25 0.50 0.04 0.30 0.71 0.70 0.01 0.75 0.95 (0.26, 0.00, 0.00, 0.74, 0)
15 31 800 360 153 29179 0.13 0.32 0.02 0.11 0.70 0.61 0.00 0.63 0.34 (0.50, 0.00, 0.09, 0.41, 0)
16 31 800 343 147 29400 0.17 0.38 0.03 0.20 0.68 0.65 0.00 0.67 0.35 (0.25, 0.00, 0.00, 0.75, 0)
17 31 800 317 135 29071 0.21 0.47 0.03 0.34 0.75 0.59 0.00 0.68 1.18 (0.09, 0.00, 0.00, 0.91, 0)
18 62 800 385 164 29327 0.22 0.37 0.04 0.21 0.87 0.69 0.17 0.61 1.35 (0.26, 0.00, 0.00, 0.73, 0)
19 62 800 309 132 29107 0.25 0.47 0.04 0.26 0.87 0.69 0.23 0.66 1.10 (0.54, 0.00, 0.00, 0.46, 0)
20 62 800 294 126 29551 0.18 0.36 0.03 0.15 0.60 0.75 0.00 0.63 1.20 (0.14, 0.04, 0.00, 0.81, 0)
21 62 800 298 127 29426 0.16 0.39 0.03 0.14 0.77 0.65 0.05 0.67 1.68 (0.06, 0.00, 0.00, 0.94, 0)
22 62 800 279 119 28989 0.17 0.37 0.03 0.16 0.85 0.67 0.00 0.60 1.35 (0.39, 0.00, 0.00, 0.61, 0)
23 97 800 315 135 29191 0.21 0.36 0.04 0.19 0.95 0.79 3.50 0.60 0.75 (0.45, 0.00, 0.00, 0.55, 0)
24 97 800 307 131 29198 0.17 0.30 0.02 0.08 0.75 0.77 1.10 0.67 1.11 (0.36, 0.00, 0.00, 0.64, 0)
25 97 800 304 129 29270 0.30 0.48 0.04 0.27 1.17 0.75 2.47 0.61 1.97 (0.00, 0.00, 0.00, 1.00, 0)
26 97 800 295 126 29295 0.18 0.42 0.02 0.10 1.04 0.62 1.35 0.82 1.14 (0.17, 0.00, 0.00, 0.82, 0)
27 97 800 287 123 29218 0.26 0.51 0.04 0.34 0.96 0.71 4.22 0.79 0.93 (0.51, 0.00, 0.00, 0.48, 0)

Table S2. A description of the Alexa Fluor 647 datasets, with reference to the
laser intensities in kW/cm2 and frames sampled per second (or ∆−1) measured
in s−1 used to characterise each of the 27 experiments. For each dataset, a
training set of size NF ×Mtr (train) was used to find the maximum likelihood
estimate θ1 via the PSHMM (estimated values shown) with d = 1. A hold out
test set of size NF ×Mte (test) was used in the posterior computations of M .

Dataset Laser ∆−1 Mtr Mte NF λ001 λ01 λ011 λ10 µ1
δ
∆

α νX
intensity ×10 × ×104 × ×102 ×105

×∆ ∆ ×∆ ∆ ×∆

1 1.0 200 192 81 49796 0.21 0.26 2.01 0.67 1.27 0.63 1.85 (0.22, 0.66, 0.12, 0)
2 1.9 200 180 77 49533 0.33 0.25 1.62 0.49 1.06 0.57 1.52 (0.18, 0.56, 0.26, 0)
3 3.9 200 234 100 49815 0.33 0.25 0.69 0.53 2.72 0.55 1.01 (0.13, 0.75, 0.13, 0)
4 3.9 200 295 110 39758 0.48 0.24 1.36 0.53 3.08 0.53 1.18 (0.09, 0.69, 0.22, 0)
5 7.8 200 238 102 39721 0.50 0.21 1.66 0.53 3.36 0.49 0.71 (0.14, 0.75, 0.11, 0)
6 7.8 800 171 72 29418 0.19 0.16 1.38 0.52 0.62 0.56 1.17 (0.52, 0.00, 0.48, 0)
7 7.8 800 159 67 29257 0.22 0.18 1.28 0.48 0.52 0.58 1.97 (0.36, 0.00, 0.64, 0)
8 7.8 800 121 51 29438 0.23 0.17 1.02 0.52 0.41 0.55 0.76 (0.71, 0.00, 0.29, 0)
9 16 800 304 129 29467 0.32 0.17 0.65 0.58 0.12 0.55 0.96 (0.33, 0.00, 0.67 0)

10 16 200 201 86 39703 0.94 0.19 0.87 0.58 0.01 0.55 1.21 (0.55, 0.00, 0.45, 0)
11 16 800 213 90 29074 0.35 0.18 0.81 0.51 0.13 0.51 0.86 (0.54, 0.00, 0.47, 0)
12 16 800 201 85 29145 0.38 0.18 0.82 0.56 0.00 0.51 0.26 (0.18, 0.00, 0.82, 0)
13 31 800 425 181 29059 0.50 0.17 0.79 0.63 0.11 0.50 1.15 (0.42, 0.08, 0.51, 0)
14 31 800 374 159 29778 0.57 0.19 0.73 0.71 0.04 0.56 1.18 (0.34, 0.00, 0.66, 0)
15 31 800 360 153 29179 0.54 0.18 0.79 0.59 0.04 0.55 0.71 (0.52, 0.07, 0.41, 0)
16 31 800 343 147 29400 0.48 0.18 0.79 0.63 0.53 0.56 0.72 (0.30, 0.00, 0.70, 0)
17 31 800 317 135 29071 0.38 0.19 0.83 0.57 0.02 0.56 1.40 (0.17, 0.00, 0.83, 0)
18 62 800 385 164 29327 0.72 0.18 0.90 0.67 0.02 0.52 1.56 (0.30, 0.00, 0.70, 0)
19 62 800 309 132 29107 0.57 0.19 1.15 0.65 1.74 0.53 1.24 (0.56, 0.00, 0.44, 0)
20 62 800 294 126 29551 0.58 0.18 0.75 0.72 0.95 0.55 1.28 (0.22, 0.02, 0.76, 0)
21 62 800 298 127 29426 0.64 0.23 0.93 0.63 0.71 0.58 2.11 (0.13, 0.00, 0.87, 0)
22 62 800 279 119 28989 0.58 0.19 1.01 0.64 0.54 0.50 1.64 (0.42, 0.00, 0.58, 0)
23 97 800 315 135 29191 0.65 0.17 1.06 0.74 4.68 0.50 0.91 (0.47, 0.00, 0.53, 0)
24 97 800 307 131 29198 0.65 0.16 0.97 0.74 2.97 0.57 1.31 (0.41, 0.00, 0.59, 0)
25 97 800 304 129 29270 0.77 0.20 1.37 0.67 3.00 0.53 1.99 (0.00, 0.00, 1.00, 0)
26 97 800 295 126 29295 0.56 0.19 1.39 0.75 3.29 0.51 1.55 (0.21, 0.00, 0.79, 0)
27 97 800 287 123 29218 0.66 0.20 1.00 0.73 4.98 0.58 0.98 (0.56, 0.00, 0.44, 0)

washes. Permeabilised cells were quenched with 300 mM glycine in TBS
for 10 minutes, rinsed, and then blocked in a blocking buffer (2% w/v BSA
(Sigma A7906), 0.2% w/v Fish Skin Gelatin (Sigma G7041) in TBS) for
1 hour. The sample was then incubated with rabbit anti-LAT polyclonal
antibody (Cell Signalling 9166) at 1:200 in 0.5 times the blocking buffer
(diluted in TBS) overnight at 4◦C. The primary antibody was removed
and the sample washed three times for 5 minutes with TBS. The sample
was then incubated with F(ab’)2-goat anti-rabbit antibody labelled with
Alexa Fluor 647 (ThermoFisher Scientific A-21246) at 1:100 in 0.5 times
Blocking Buffer for 1 hour at room temperature followed by three 5-minute
TBS washes.
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Table S3. A description of the Alexa Fluor 647 datasets, with reference to the
laser intensities in kW/cm2 and frames sampled per second (or ∆−1) measured
in s−1 used to characterise each of the 27 experiments. For each dataset, a
training set of size NF ×Mtr (train) was used to find the maximum likelihood
estimate θ0 via the PSHMM (estimated values shown) with d = 0. A hold out
test set of size NF ×Mte (test) was used in the posterior computations of M .

Dataset Laser ∆−1 Mtr Mte NF λ01 λ10 µ1
δ
∆

α νX
intensity ×103 × ×10 ×105

×∆ ∆ ×∆

1 1.0 200 192 81 49796 2.59 0.57 0.15 0.59 0.47 (0.85, 0.15, 0)
2 1.9 200 180 77 49533 1.34 0.42 0.14 0.52 0.35 (0.72, 0.28, 0)
3 3.9 200 234 100 49815 0.53 0.44 0.39 0.51 0.15 (0.86, 0.14, 0)
4 3.9 200 295 110 39758 0.71 0.45 0.38 0.50 0.16 (0.77, 0.23, 0)
5 7.8 200 238 102 39721 0.70 0.46 0.39 0.46 0.07 (0.88, 0.12, 0)
6 7.8 800 171 72 29418 1.94 0.46 0.15 0.51 0.39 (0.50, 0.50, 0)
7 7.8 800 159 67 29257 1.92 0.43 0.15 0.54 0.41 (0.35, 0.65, 0)
8 7.8 800 121 51 29438 1.59 0.46 0.18 0.51 0.15 (0.66, 0.34, 0)
9 16 800 304 129 29467 1.19 0.49 0.33 0.50 0.21 (0.33, 0.67, 0)

10 16 200 201 86 39703 0.55 0.48 0.45 0.49 0.16 (0.52, 0.48, 0)
11 16 800 213 90 29074 1.07 0.43 0.26 0.47 0.17 (0.50, 0.50, 0)
12 16 800 201 85 29145 1.00 0.47 0.28 0.45 0.15 (0.21, 0.79, 0)
13 31 800 425 181 29059 0.69 0.51 0.43 0.44 0.24 (0.48, 0.52, 0)
14 31 800 374 159 29778 0.65 0.60 0.49 0.50 0.21 (0.36, 0.64, 0)
15 31 800 360 153 29179 0.61 0.50 0.38 0.48 0.18 (0.57, 0.43, 0)
16 31 800 343 147 29400 0.74 0.52 0.43 0.48 0.21 (0.33, 0.68, 0)
17 31 800 317 135 29071 1.07 0.48 0.28 0.50 0.37 (0.21, 0.79, 0)
18 62 800 385 164 29327 0.60 0.53 0.51 0.43 0.32 (0.33, 0.67, 0)
19 62 800 309 132 29107 0.73 0.54 0.46 0.46 0.31 (0.54, 0.46, 0)
20 62 800 294 126 29551 0.64 0.57 0.64 0.47 0.27 (0.28, 0.72, 0)
21 62 800 298 127 29426 0.77 0.51 0.41 0.50 0.41 (0.19, 0.81, 0)
22 62 800 279 119 28989 0.70 0.52 0.40 0.43 0.33 (0.42, 0.58, 0)
23 97 800 315 135 29191 0.55 0.62 0.85 0.46 0.15 (0.45, 0.55, 0)
24 97 800 307 131 29198 0.53 0.62 0.78 0.49 0.22 (0.43, 0.57, 0)
25 97 800 304 129 29270 0.64 0.58 0.53 0.50 0.28 (0.01, 0.99, 0)
26 97 800 295 126 29295 0.83 0.63 0.58 0.45 0.30 (0.25, 0.75, 0)
27 97 800 287 123 29218 0.61 0.60 0.91 0.50 0.19 (0.55, 0.45, 0)

Fixed and stained samples were prepared for imaging by replacing
the final TBS wash with a volume of STORM imaging buffer (50 mM
Tris-HCI (pH 8.5), 10 mM NaCl, 0.56M glucose, 5 U per ml pyranose
oxidase (Sigma P4234), 40µg per ml bovine catalyse (Sigma C40), 35mM
cysteamine (Sigma M6500), and 2 mM cyclooctatetraene (Sigma 138924).
The sample was then used immediately for imaging.

The dSTORM image sequences were acquired on a Nikon N-STORM
system in a TIRF configuration using a 100 × 1.49 NA CFI Apochromat
TIRF objective for a pixel size of 160 nm. Samples were illuminated with
647 nm laser light at approximately 2 kW per cm2; no 405 nm laser light
was used during imaging. Images were recorded on an Andor IXON Ultra
897 EMCCD using a centred 256 × 256 pixel region at 20 ms per frame
for 40,000 frames with an electron multiplier gain of 200 and pre-amplifier
gain profile 3.

The dSTORM imaging data were processed using ThunderSTORM
(Ovesný et al., 2014) with the following parameters: pre-detection wavelet
filter (B-spline, scale 2, order 3), initial detection by non-maximum
suppression (radius 1, threshold at one standard deviation of the F1
wavelet), and sub-pixel localisation by integrated Gaussian point-spread
function (PSF) and maximum likelihood estimator with a fitting radius
of 3 pixels. Detected points were then corrected for sample drift using
cross-correlation of images from 5 bins at a magnification of 5.

For single antibody imaging, constituting the training data, F(ab’)2-
goat anti-rabbit antibody labelled with Alexa Fluor 647 was diluted
1:1,000,000 in PBS and incubated on a glass-bottomed chamber slide
overnight at 4◦C. The antibody solution was removed and the surface
rinsed twice in PBS. Imaging buffer was then added to the well and
the sample imaged by dSTORM. Isolated clusters of localisations were
identified in the reconstructed image such that for each cluster, the
constituent points were saved to a separate file.
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