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Abstract
Satellite imagery can detect temporary cloud trails or ship tracks formed from aerosols

emitted from large ships traversing our oceans, a phenomenon that global climate models
cannot directly reproduce. Ship tracks are observable examples of marine cloud brightening,
a potential solar climate intervention that shows promise in helping combat climate change.
Whether or not a ship’s emission path visibly impacts the clouds above and how long a ship
track visibly persists largely depends on the exhaust type and properties of the boundary
layer with which it mixes. In order to be able to statistically infer the longevity of ship-
emitted aerosols and characterize atmospheric conditions under which they form, a first
step is to simulate, with mathematical surrogate model rather than an expensive physical
model, the path of these cloud-aerosol interactions with parameters that are inferable from
imagery. This will allow us to compare when/where we would expect to ship tracks to
be visible, independent of atmospheric conditions, with what is actually observed from
satellite imagery to be able to infer under what atmospheric conditions do ship tracks form.
In this paper, we will discuss an approach to stochastically simulate the behavior of ship
induced aerosols parcels within naturally generated clouds. Our method can use wind fields
and potentially relevant atmospheric variables to determine the approximate movement
and behavior of the cloud-aerosol tracks, and uses a stochastic differential equation (SDE)
to model the persistence behavior of cloud-aerosol paths. This SDE incorporates both a
drift and diffusion term which describes the movement of aerosol parcels via wind and
their diffusivity through the atmosphere, respectively. We successfully demonstrate our
proposed approach with an example using simulated wind fields and ship paths.
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1. Introduction

For decades, satellite imagery has been able to detect ship tracks, temporary cloud
trails created via cloud seeding by the emitted aerosols of large ships traversing our
oceans . Ship tracks are of interest because they are unintentional and observable
examples of marine cloud brightening, a potential solar climate intervention (e.g.
Latham, 1990; Council, 2015; Gunnar et al., 2013). Ship tracks are visible evidence
of the ability of large amounts of anthropogenic aerosols to perturb boundary
layer clouds enough to alter the albedo of the atmosphere, usually brightening the
surrounding clouds (Twomey Effect, Twomey et al. (1966)), and thus significantly
contribute to indirect radiative forcing (Capaldo et al., 1999; Eyring et al., 2010).
Recently, this phenomenon has become more frequently observed as satellite tech-
nology has significantly improved since ship tracks were first observed by Conover
(1966) and Twomey et al. (1966). Using the recently deployed GOES-R geosta-
tionary satellite series, we have seen that these tracks can remain visible in the
atmosphere throughout the year, lasting a few hours to more than 24 hours before
diffusing and mixing back into the atmosphere. It is also well-known that certain
atmospheric conditions lead to more visible ship tracks than others, varying image
sampling times, cloud movement and changes in humidity (Possner et al., 2018) can
also cause tracks to be poorly observed and may hinder any corresponding image
analysis (see Figure 1).

(a) (b)

Figure 1: Visible ship tracks (left) on April 12, 2019 compared with no visible tracks (right) on
April 7, 2019 with 3 hours of known ship locations (shown in red). Images (5000km × 3000km)
taken at 12:00 GMT with ABI spectral band C06 off coast of California.1

Although ship tracks has been actively studied since the 1960s, indirect radiative
forcing is still the largest documented source of uncertainty when it comes to overall
radiative forcing in climate modeling (Carslaw et al., 2013). Most current knowledge
on specific conditions under which tracks form have come from physical simulation
studies under pristine conditions, which do not necessarily represent reality. In
climate simulation studies of this phenomenon (Wang et al., 2011; Berner et al.,
2015; Possner et al., 2018; Blossey et al., 2018), aerosol injections are initiated by
the user at a known location in fully defined environments. Satellite-observed tracks,
however, are instead “initiated” by an unknown source and form in a dynamic and
only partially known environment that is difficult or near impossible to replicate in
a physical simulation study, which can also be quite computationally expensive.

1GOES-R imagery data available at https://www.bou.class.noaa.gov/saa/products/welcome
and AIS data available at https://info.seavision.volpe.dot.gov.



In this work, we present a computationally efficient, mathematical simulation
approach to emulating the observed formation and behavior of ship tracks. Exisiting
methods focus on modeling the chemical evolution of aerosol composition (Riemer
et al., 2008; Sofiev et al., 2009) and are not applicable to the physical modeling
of cloud-aerosol paths through the atmosphere. Our approach aims to do so by
flexibly accounting for the effect of weather and atmospheric conditions.

Our method is different from physical simulation approaches in that it attempts
to emulate what is observed via satellite, rather than generate the full 3-D micro-
physics environment. Ultimately, we would like to infer from imagery and atmo-
spheric data under what conditions do track form or not form to incorporate in our
emulation approach. For now, without more information on to what degree atmo-
spheric conditions effect the visibility or behavior, we present the general framework
accounting for the cloud movement and point out where atmospheric effects can be
incorporated.

The remainder of this paper is organized as follows: Section 2 presents the
background motivating the simulations. Section 3 and 4 outlines our emulation
approach and provides simulation examples, respectively. Lastly, Section 5 discusses
follow-on work and potential impacts of this research.

2. Background

For a given ship, we consider modeling each aerosol emission burst as a single target.
Each target is transported vertically from the ship through the atmosphere until it
reaches a specific altitude near the cloud top height at which the target can become
visible to orbital satellites and form a linear tracks in a cloud. Figure 2 outlines the
general behaviors of the aerosols that are observed or unobserved via satellite.The
green box in Figure 2 represents the portion of the track formation process that is
visible via satellite. A ship track is the visible effect of the exhaust aerosols mixing
with the low-lying clouds. The vertical transport of the aerosols between the ship’s
smoke stack and the boundary clouds is largely unknown and unobserved. The
exact altitude of the boundary clouds in which the ship track forms and the time
lag between an aerosol burst released from a ship and reaching the visibility height
largely depends on the complex weather and cloud dynamics. The visibility height
can be approximated using cloud top height measurements obtained from satellite
retrievals but the time lag is likely impossible to infer from satellite images with
spatial resolution greater than a kilometer such as those retrieved from the GOES-
R imager. Aerosol transport from ship to boundary layer (height at which cloud
formation starts) should be fairly vertical without much resistance but tracking it
vertically through the clouds is not trivial.

Due to variations in of fuel types and quantities emitted and complex atmosphere
dynamics, not all emission bursts will produce visible tracks. Thus, we only observe
ship tracks under the appropriate conditions. This not only means that not all
ship emissions will produce a ship track, but also that interruptions in the visibility
of an existing ship track can occur when ships pass under different atmospheric
conditions.

To the naked eye, new ship track observations appearin imagery directly above
known ship locations due to the resolution of the imaging so it is reasonable think
of the entire vertical transport path from ship to boundary layeras nearly “instanta-
neous” with some epsilon error. For this reason, in this paper, we implicitly impose
a known but random time lag between ship emissions and their first detection at



Figure 2: https://ral.ucar.edu/staff/jwolff/aerosols.html/intro.html

the cloud top layer in our simulations. Existing ship track formations will then
move with wind dynamics, a variable that is straight-forward to simulate and is
independent of actual ship movement. The visible tracks then persist in the clouds
for an unknown time as ship tracks until the aerosols are fully diffused into the
atmosphere and are no longer distinguishable from the surrounding clouds.

3. Modeling aerosols using a Hidden Markov Model (HMM)

To model the formation and behavior of the aerosol tracks we construct a state-
space point process representation relating imaging observations of emission tracks
to partially observed, known locations of aerosol emission bursts from ships. A
constructed Hidden Markov Model (HMM) is outlined sectionto characterize the
relationship between between the image observations and partially observed truth.
We are interested in building a computational model that can emulate the persisting
behavior the ship tracks to understand how this behavior changes with changing
atmospheric dynamics.

3.1 State-space representation

The true emission path is generated by the continuously emitted aerosol emis-
sion packets by a single ship over the spatial window X ⊂ R2 up to time T ∈[
0,
∑N−1

n=1 ∆n,n+1

]
where N is the number of frames and ∆n,n+1 > 0 is the time

between frames n and n + 1 (typically between 5 and 15 minutes). For simplicity,
we assume in this article that ∆n,n+1 ≡ ∆, so that tn+1 − tn = ∆ for all n.

We first define the unobserved spatio-temporal point process {Xn : (x, y, tn) ∈
R2×R} which characterizes the true behavior of the aerosol emission bursts, contin-
uously released prior to (and still visible at) time tn. Second, we define the observed
spatio-temporal point process {Yn : (x, y, t) ∈ R2 ×R} which characterizes the pat-
terns of the partially observed ship tracks in image frame n, generated by Xn. Using
this state-space representation, we formulate a Hidden Markov Model relating the
two processes. T can also be defined in terms of number of image frames such that
T ∈

[
0,
∑N−1

n=1 ∆n,n+1

]
where N is the number of frames and ∆n,n+1 > 0 is the time

between frames n and n+1. For simplicity, and since many imagers tend to collect
data at regular intervals, we assume that ∆n,n+1 ≡ ∆, so that tn+1 − tn = ∆ for all
n.



The true emission path is generated by the continuously emitted aerosol emission
packets by a single ship over the spatial window X ⊂ R2 up to time T > 0, T ∈
R, with X and time T typically defined by the imager or the user. Although
in practice, the observed satellite imagery and our partially observed data Ytn is
observed discreetly, we will treat time as continuous in our simulation model. For
ship k = 1 . . .K which produces a track, we assume that its entire emission path
is comprised of Pk > 0 aerosol bursts(packets) which may or may not become
visible. Assuming that only ktn of K ships that are expected to be observed prior
to T , have entered the window X by time tn < T , for an arbitrary single track
k = 1 . . . ktn , only pktn ≤ Pk packets are expected to become visible. To show
proof of concept, for now we will ignore the complex cloud dynamics and assume
all emission packets reach reach the boundary layer clouds and become visible with
time lag < ε. This will allow us to start with a general simulation framework and
build in more atmospheric conditions when needed at a later time.

In the region of interest X , we denote the set of true positions or states of each
packet as {xi,n}

pktn
i=1 , where xi,n ∈ X denotes the state of the ith packet of emission

track k at time tn.
Existing ship tracks are only modified at the next time step tn+1 in three possible

ways:

• the oldest aerosol emission packets at the end of the track diffuse completely
and mix back into the atmosphere (leaving no detectable trace), or

• surviving packets diffuse and become less distinguishable as part of the track
(but are still visible), according to cloud dynamics and wind motion, or

• new packets appear at the front of the track in the direction the ship move-
ment.

These situations result in pkn+1 new states(locations) {xi,tn+1}
pkn+1

i=1 in each of
the new and existing emission tracks present at time tn+1.

In practice, however, the full lifespan (from first appearance to permanent dis-
appearance) of each emission packet is unknown. Instead, at each observed image
frame n, the GOES-R ABI sensor captures a snapshot in time of all estimated packet
locations without information on age of the packet, i.e. how long the observations
have visibly persisted in the atmosphere. It is also the case that the locations of
the emission packets over their lifespan are not unique and can share a location
with another emission packet. Specifically, for a track ktn , a set of oktn ≤ pktn
observations {yi,tn}

oktn
i=1 , is recorded, where yi,tn ∈ Y denotes the state of the ith

observation at time tn. We may assume that Y = X .
At time tn ∈ R, a newly observed track can be generated from newly released

emission packets into the atmosphere. Due to the complex dynamics of the atmo-
sphere, it is not often possible to link new observations to their true source. An
observed aerosol track from GOES-R is not always visible directly above the known
ship location. Thus, we will assume that there is no information about which
emission packet generates which observation. Since there is no ordering on the re-
spective collections of emission packet states and measurements at time tn, they
can be naturally represented as finite spatial-temporal point processes. Specifically,



for n = 1, . . . N , we denote

Xt = {{ x1,t, . . . ,xp1,t︸ ︷︷ ︸
p1 packets

from emission 1

}, . . . , {xkt,t, . . . ,xpkt,t︸ ︷︷ ︸
pkt packets

from emission kt

}} kt ≤ K

Yt = {{ y1,t, . . . ,yo1,t︸ ︷︷ ︸
o1 packets

from emission 1

}, . . . , {ykt,t, . . . ,yokt,t︸ ︷︷ ︸
okt packets

from emission kt

}} o1 ≤ p1, . . . , okt ≤ pkt

where F(X ) and F(Y) denote the collections of all finite subsets of X and Y re-
spectively. The target point process Xtn is referred to as the multi-target state and
the measurement set Ytn is referred to as the multi-target observation. With this
model specification, the objective is to recover the true states of emission packet
point processes Xt1 , Xt2 , . . . , XtN from their measurement sets Yt1 , Yt2 , . . . , YtN .

3.1.1 Multi-target state model

In this section, we describe a finite point process model for the time evolution of
the multiple-target state Xtn , n = 1, . . . , N , which incorporates emission packet
motion, birth and death. Specifically, we mathematically define the processes of
aerosol packets first being conceived in boundary layer clouds, their motion and
diffusion through the atmosphere until their permanent disappearance.

After an aerosol track has already formed at time tn−1, if an emission packet
xtn−1 ∈ Xtn−1 which makes up part of that track survives to time tn+1 > tn, its
subsequent state is determined by a drift term which is described by the wind motion
at xtn−1 , and a diffusion term which describes the diffusion of the emission packet
within the clouds it is situated in. This type of process is known as a Markov
diffusion process and is described by the following (continuous time) stochastic
differential equation:

dxt = µ(xt, t)︸ ︷︷ ︸
drift

dt+ σ(xt, t)︸ ︷︷ ︸
diffusion

dBt, (1)

where Bt ∼ N2(0, tI2) denotes a standard Brownian motion in two dimensions, with
I2 denoting the 2-dimensional identity matrix. The drift function µ(xt) denotes the
wind velocity at point xt, at time t and is in general known. For this problem, we
choose the diffusion function σ(xt) ≡ σx to be a constant that describes the diffusiv-
ity of an aerosol parcel within the atmospheric boundary layer. The solution to (1)
with a changing wind velocity in space and time is in general unknown and requires
numerical solvers which may be computationally cumbersome and time consuming.
For simulation purposes, we therefore propose the following approximation.

Given discrete time intervals of the form In = (tn, tn+1] ≡ (n∆, (n+ 1)∆], with
n ∈ Z+, we assume that the simulation interval time tn+1 − tn = ∆ is taken small
enough so that the wind velocity within the interval is approximately constant.
That is to say, for a continuous time point t ∈ In, we use the approximate SDE

dxt = µ(xt)dt+ σxdBt, (2)

with µ(xt) denoting the wind velocity field for a parcel with state xt. Given a



previous state xs at time s ∈ In, t > s, equation (1) can be solved directly

dxt = µ(xt)dt+ σxdBt

=⇒ xt − xs =

∫ t

s
µ(xt) dw + σx(Bt −Bs)

= µ(xt)(t− s) + σxBt−s,

where Bt−Bs
D≡ 2Bt−s ∼ N2(0, (t−s)I2). This implies the corresponding transition

density is
xt|xs ∼ N2(xs + µ(xs)(t− s), σ2

x(t− s)I2).

In particular, the probability density of the parcel’s transition to state xtn ∈ Xtn

from state xtn−1 is given by the Markovian density fM
tn|tn−1

(xtn |xtn−1) ∼ N2(xtn−1 +

µ(xtn−1)∆, σ2
x∆I2). Its behavior at this time is therefore modeled by the point

process Stn|tn−1
(xtn−1), where

Stn|tn−1
(xtn−1) =

{
xtn where xtn ∼ fM

tn|tn−1
(·|xtn−1) with probability pS,tn(bxtn−1

)

∅ otherwise.
(3)

Here, pS,tn(bxtn−1
) denotes the survival probability of packet xtn−1at time tn (de-

scribed in more detail below) and where the motion diffusion coefficient σx is un-
known and requires estimation from the model.

A new emission packet at time tn ∈ R can arise in two ways. The first is as a
spontaneous birth (of a newly risen emission track), which is independent of any
existing emission track. The second is by spawning from an existing emission source,
resulting in a newly visible emission packet. We denote the birth time of packet xtn

(partially) observed at time tn as bxtn
.

Spontaneous births of new emission tracks at time t are denoted by the finite
point process Γt. We model Γt as a finite Poisson point process with intensity
function γt(x) = λγtfb,t(x)), for x ∈ X :

Γt ∼ Poisson(λγtfb,t(x)). (4)

• Here, Nb,t ∼ Poisson(
∫
X λγtfb,t(x)dx) denotes the number of births occurring

in X at time t.

• fbt(x) denotes their spatial distribution.

Assuming we have knowledge (simulated or real) of the boat positions/path that
produce these new emissions, we may let this inform fbt(x). Specifically, if xb,tn

is the position of a new boat at time tn, then fbtn+ε(x) = N2(xb,tn , σ
2
b I2) where ε

denotes the time lag between ship emission and aerosol observation at the cloud-
boundary layer.

Spawned births occurring within the time interval In−1 denote newly visible
emission packets from existing emission tracks that reach the cloud top layer at
time tn. Newly spawned targets can only be spawned by packets that were birthed
in the previous time interval In−2, as this models the continuous emission of aerosol
packets in a single stream.

2D≡ denotes equivalence in distribution.



We model the set of spawned births Btn|tn−1
(xtn−1) at time tn from a packet

xtn−1 at time tn−1 as a finite point process. An example used in this paper is
Bernoulli point process with spawning probability pβ,tn :

Btn|tn−1
(xtn−1) =

{
{x}; x ∼ fβ

tn|tn−1
(x|xtn−1) with probability pβ,tn tn−2 < bxtn−1

≤ tn−1

∅ otherwise.

1. The number of spawned targets Ns,tn from xtn−1 follows Ns,tn ∼ Bernoulli(pβ,tn).

2. Therefore at most one packet can be spawned from a target xtn−1 born in the
previous time step.

3. If Ns,tn = 1, then the spatial distribution of the spawned target x follows
fβ
tn|tn−1

(·|xtn−1) from xtn−1 .

In this paper, we assume knowledge of ship positions that continuously emit
aerosols whilst moving, thereby corresponding to this spawning process. For simu-
lation purposes, we therefore use the spawning density

fβ
tn|tn−1

(x|xtn−1) = N2(xb,tn−ε + εσ2
βI2).

The spawning probability pβ,tn is directly related to the number of aerosol pack-
ets each ship emits during the observed time window. For simulation purposes,
we assume that each boat continuously emits aerosols up to the simulation time
T = N∆ and that they exist when within the observed window X . This enables
pβ,tn = 1 when tn ≤ T and is zero otherwise.

Figure 3 illustrates the motion and spawning process of an aerosol packet de-
scribed by our procedure.

x1
tn−2

x1
tn−1

x1
tn

x2
tn−1

x2
tn x3

tn

fMtn−1|tn−2
(·|x1

tn−2
)

fMtn|tn−1
(·|x1

tn−1
) fMtn|tn−1

(·|x2
tn−1

)

fβtn−1|tn−2
(·|x1

tn−2
)

fβtn|tn−1
(·|x2

tn−1
)

Figure 3: The motion and spawning process. The first packet x1
tn−2

(indicated in
yellow) born at time tn−2 undergoes Markovian motion (black) to reach state x1

tn−1

and spawns a target (indicated in green) x2
tn−1

at time tn−1. This packet undergoes
Markovian motion (black) to reach state x2

tn and is to spawn a packet (indicated in
pink) x3

tn at time tn.

For a given multi-target state Xtn−1 at time tn−1, each packet x ∈ Xtn−1 either
continues to exist (survives) at time tn > tn−1 with probability pS,tn(x, bx), or “dies”
with probability 1−pS,tn(x, bx). Here, a “death” of an emission packet occurs when



it sinks back through the atmosphere and ceases to be visible. Furthermore, the
survival probability of each emission packet is written as a function of the time tn,
its spatial location x, and the packet’s “birth” time bx in the region. However, since
the effects of up and downward drafts in the atmosphere on each packet can be
considered negligible, this enables the survival probability to only be a function of
t and bx, i.e. that pS,t(x, bx) ≡ pS,t(bx).

In this simulation model, we assume that each boat produces a cloud-aeorosol
track that has an average lifetime Td ∼ Exp(λT ) from birth. Given Td, the individual
aerosol packets that are contained in its emission then each have an independently
and identically distributed (i.i.d.) death time

d ∼ Log-normal

µd = log

 Td√
σ2
pd

+ T 2
d

 , σ2
d = log

(
σ2
pd

+ T 2
d

T 2
d

) ,

where σ2
pd

is the variance of the packet death time and is a fixed simulation input.
Altogether, we have a multi-target state Xtn of the following form

Xtn =

 ⋃
x∈Xtn−1

Stn|tn−1
(x)


︸ ︷︷ ︸

Survived packets

∪

 ⋃
x∈Xtn−1

Btn|tn−1
(x)


︸ ︷︷ ︸

Spawned packets

∪ Γtn︸︷︷︸
New emissions

. (5)

An important modeling characteristic is that the unions in (5) are independent.

3.1.2 Multi-target observational model

In this section, we describe a finite point process model for the time evolution of
the multiple-target observation,Ytn , n = 1, . . . , N , which incorporates observations
generated from emission tracks.

When a packet xtn ∈ Xtn is generated according to the process described above,
an observation of it ytn ∈ Ytn is generated from an observational model gtn(·|xtn).
This function is typically chosen to take the form ytn |xtn ∼ N2(xtn ,Σxtn

), where
Σxtn

can be taken to be the marginal covariance of xtn . Specifically, for packet xtn

birthed at time bxtn
, its marginal density can be calculated via

f(xtn) =

∫
X
fM
tn|bxtn

(xtn |xbxtn
)π(xbxtn

) dxbxtn
,

with π(xbxtn
) being the initial probability density of packet xtn in X at the time of

its birth. For this paper, we take π(xbxtn
) = δxbxtn

(xbxtn
), the dirac delta function

centered at xbxtn
, yielding Σxtn

= σ2
x(tn − xbxtn

)I2 and

yt|xt ∼ N2(xt, σ
2
x(tn − t0)I2).

When simulating across pixelated grids, we discretize the above equation such
that the pixel intensity of a pixel P at time tn denoted Itn(P ) follows

It(P ) ∝
∑
y∈Yt

∫
P
f(y|xt) dy

with the normalization constant given by the highest pixel intensity simulated across
the video.



For observations generated by true emission packets, we note that a packet
x ∈ Xt, at time t is only detected by satellites with probability pD,t(x). This
detection probability has a spatio-temporal dependence structure which is needed
to first, model the spatial randomness of cloud humidity/density and second, to
account for cloud movement across the observation time window. In the field of
view X , if the cloud humidity is too low or too high, emission packets cannot be
detected. In the former case, packets cannot be observed since clouds cannot form to
produce the necessary observations. In the latter, the cloud density may be too high,
or may already be contaminated with existing aerosols which would subsequently
not produce observations of new packets.

To deal with this, we may choose to model pD,t(x) as a function of the exist-
ing cloud humidity/density. This may be formulated by modeling pixel intensities
measured by an imager, such as the GOES-R ABI sensor, and utilizing a lower and
upper threshold ιL, ιU . For example, setting

pD,t(x) =

{
1 if ιL < It(x) < ιU

0 otherwise,
(6)

enables a packet to be observed with probability one if its true location x lies within
a pixel of the nth frame, with an intensity Itn(x) ∈ (ιL, ιU ), sufficient for it to be
observed via satellite.

Subsequently, the observational point process Θtn(xtn) from an emission packet
xtn ∈ X follows

Θtn(xtn) =

{
{y} where y ∼ ytn |xtn with probability pD,tn(xtn)

∅ with probability 1− pD,tn(xtn).
(7)

Altogether, we have a multi-target observation Ytn of the following form

Ytn =
⋃

x∈Xtn

Θtn(x). (8)

4. Imaging simulation

In this section, we use the aforementioned simulation method to simulate a video
of cloud-aerosol tracks with input parameters as outlined in Section 3.

A snapshot of five images taken 20 time steps apart with time step ∆ = 0.2
hours from the simulation are shown in Figure 4. In this simulation, four boat
paths were simulated in longitude/latitude appearing at staggered times into the
frame. The four corresponding cloud-aerosol tracks were generated using the boat
positions, the spawning, persistence and death processes described in this work
with input parameters (see Table 1) within a (simulated) circular wind motion.
A realistic cloud image was initially used as a background, in which cloud pixels
also moved with the simulated wind field. For illustration purposes, however, this
has been omitted from the presented images to fully demonstrate the ability of
our algorithm in simulating cloud-aerosol tracks. In this simulation, the tracks
are observed to follow both the general direction of the boat path and the wind
field, with the diffusivity effect emphasized by the broadening of each track through
time. Furthermore, the pixel intensities are observed to be higher when cloud tracks
overlap (as seen at time steps 40, 60 and 80), highlighting the the potential for an
interaction effect of multiple aerosol packets from different emission sources in an
arbitrary area.



Figure 4: Simulation snapshots taken 4 hours apart. Boats (red, blue, purple,
yellow) and heads (orange) are indicated by colored dotted trajectories, wind di-
rection indicated by the yellow arrows and cloud-aerosol tracks indicated by white
trajectories. Parameter inputs for this simulation can be found in Table 1.

Parameter Value
N 100
∆ 0.2 hours
ε 5 hours
σβ 0.01
σx 0.01
λT 80 hours
σpd 0.2 hours
µ(xt)

10π
4N∆

√
(x− 0.2t)2 + (y + 0.1t)2

Position of red boat xb1,t

[
5 cos

(
πt

10N∆

)
+ 3, 5 sin

(
πt

2N∆

)
+ 2
]

Position of blue boat xb2,t

[
1 + 5t

N∆ , 18− 2t
N∆

]
Position of purple boat xb3,t

[
1 + 5t

N∆ , 18− 10t
N∆

]
Position of yellow boat xb4,t

[
−4 + 10t

N∆ , 10 + 2t
N∆

]
Table 1: Input parameters for simulation.

5. Discussion and follow-up work

In this paper, we have described a computational method to simulate cloud-aerosol
tracks given wind and boat simulated fields, using a stochastic differential equation
that incorporates aerosol packet birth, motion, diffusion and death. A simulation
example has been provided to highlight each step of our algorithm.

Using the presented methodology, a next step would be to verify that this sur-
rogate model is accurate in representing cloud-aerosol paths that are observed in
satellite imagery. This is challenging as real cloud-aerosol tracks have an unknown
or unidentifiable source and the relationship between observed atmospheric prop-
erties and track behavior is not trivial to infer from imagery alone. Incorporating
observed wind data from ERA-5 reanalysis and available atmospheric information
that are well-documented to contribute to cloud track formation such cloud conden-
sation nuclei (CCN) and liquid water paths (LWP) also available from reanalysis
products such as MERRA-2, into an improved simulation algorithm would aid in the
simulation of realistic cloud-aerosol behaviors. This would thereby allow us to focus
on developing methodology and inference mechanisms to estimate atmospheric con-



ditions under which ship tracks form or not form, which can then directly inform
simulation inputs. Additionally, this level of inference would require labeling im-
age pixels and extracting observation points of cloud tracks, which may necessitate
feature extraction algorithms such as Convolution Neural Networks (CNN) such as
the one developed in Yuan et al. (2019).
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