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ABSTRACT

Extreme events with potential deadly outcomes, such as those organized by terror groups, are highly
unpredictable in nature and an imminent threat to society. In particular, quantifying the likelihood of
a terror attack occurring in an arbitrary space-time region and its relative societal risk, would facilitate
informed measures that would strengthen national security. This paper introduces a novel self-exciting
marked spatio-temporal model for attacks whose inhomogeneous baseline intensity is written as
a function of covariates . Its triggering intensity is succinctly modeled with a Gaussian Process
prior distribution to flexibly capture intricate spatio-temporal dependencies between an arbitrary
attack and previous terror events. By inferring the parameters of this model, we highlight specific
space-time areas in which attacks are likely to occur. Furthermore, by measuring the outcome of an
attack in terms of the number of casualties it produces, we introduce a novel mixture distribution
for the number of casualties. This distribution flexibly handles low and high number of casualties
and the discrete nature of the data through a Generalized ZipF distribution. We rely on a customized
Markov chain Monte Carlo (MCMC) method to estimate the model parameters. We illustrate the
methodology with data from the open source Global Terrorism Database (GTD) that correspond
to attacks in Afghanistan from 2013-2018. We show that our model is able to predict the intensity
of future attacks for 2019-2021 while considering various covariates of interest such as population
density, number of regional languages spoken, and the density of population supporting the opposing
government.

Keywords Self exciting point processes · Discrete extreme value distribution · Bayesian methods · Global terrorism
data base · Afghanistan

1 Introduction

Recent global developments have seen a surge in high-consequence events with life-threatening consequences. The
emergence of such extreme situations has heightened the urgency of their detection, prevention, and deterrence. While
many quantitative methods endeavor to address this topic, few are able to fully consider the spatio-temporal impact
of historic records on the risk of subsequent lethal events. In this paper, we propose a novel approach to detecting
and predicting terrorism attacks using concepts from extreme value analysis and a spatio-temporal self-exciting point
process framework. The focus of this work is in modeling terror insurgencies, violent uprisings organized by groups
such as the Taliban, Boko Haram, and the Islamic State (IS), using a repertoire of terror-based attacks against civilians
in an attempt to overthrow a government of interest. Application of our model will be highlighted by studying the
insurgency of the Taliban in Afghanistan between 2013-2021, a highly relevant socio-political topic that is currently
generating significant global coverage.
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In the literature, traditional statistical models seek to describe the overall distribution of such rare events of modeling
interest, while extreme value analysis prioritizes the characterization of events that lie in the tails of these distributions.
Extreme value methods have commonly been used to predict and quantify uncertainty around environmental or
climatological events associated with high costs such as a high impact on human casualties (e.g., earthquakes, hurricanes,
flooding, wildfires), as described in for example, Coles (2001). From a statistical point of view, extreme value data can
be modeled based on two types of approaches. The first relies on calculating a sequence of maximum (or minimum)
values over blocks of data, e.g. monthly or yearly maxima (minima) and fitting these values to their large sample
distribution, the Generalized extreme value (GEV) distribution. The second finds observations that exceed (or fall below)
a given threshold and fits the Generalized Pareto distribution (GPD) to these exceedance values. The latter method is
also known as a Peaks over Threshold (PoT) approach and can make a more effective use of the data rather than only
considering the block maxima. Additionally, a PoT approach can be more flexible than analyses of block maxima as it
can allow for the simultaneous prediction of the time and characteristics of an extreme event. The utilization of both
methods are application specific but have not been considered extensively to assess extreme high consequence terrorism
events. However, the specialized literature includes extensive developments of both block-maxima and PoT approaches
for time series and point-referenced spatial data. The interested reader is directed to the works of Castro-Camilo et al.
(2019); Bortot and Gaetan (2014); Bortot and Tawn (1998); Bracken et al. (2016); Cooley and Sain (2010); Cooley et al.
(2007); Gaetan and Grigoletto (2007); Huerta and Sanso (2007); Sharkey and Winter (2019) for more information on
temporal or space-time extreme value analysis and some of its applications.

In this work, we propose novel methodology to analyze spatio-temporal patterns of extreme terror attacks with potential
life-threatening implications. Our model is intended to quantify and predict the time, location, and likelihood of a future
extreme event, with the extremity of an event defined by the number of casualties it produces. A specific aspect of
our model for this application considers point process modeling and therefore follows the works of Patel et al. (2020);
Tucker et al. (2019); Zammit-Mangion et al. (2012). Point process models are useful to describe, in a probabilistic
manner, phenomena that occur in space-time, and are therefore highly suitable to model complex terror insurgencies. In
such situations, homogeneous point processes, which would assume a constant rate of attacks, insufficiently capture
event clustering in space-time. Instead, we rely on self-exciting processes to capture the spatio-temporal dependencies
that naturally arise in terror formations and resurgences, as illustrated previously by Mohler et al. (2011) which focused
on crime modeling and dispersion in Chicago and Tucker et al. (2019) which looked at issues of incomplete data to
characterize terrorism events in Colombia.

Our methodology is sufficiently flexible to characterize the spatio-temporal behavior of region-specific attacks and their
associated number of casualties, which represent the marks of a marked spatio-temporal point process underlying terror
behavior. To account for the extreme behavior of these marks, we develop a novel mixture model to estimate a discrete
mark distribution that simultaneously models situations with a low number of casualties and cases where casualties can
be considered extreme or above a threshold. In particular, we show that the marks above a threshold are well estimated
via a Generalized-ZIPF distribution which gives an analog representation to the well known GPD or PoT approach as
described previously. Therefore, we can appropriately model the number of casualties for extreme terrorism events
separately from events which fall within the expected casualty range. In the context of financial time series, Grothe et al.
(2014) proposed a multivariate time series model within the PoT framework where clustering of events is captured via a
self exciting point process. The model parameters are estimated with MLE and illustrated with the analysis of daily
log-returns obtained from financial markets. To the best of our knowledge, the combination of self-exciting mark point
processes with a discrete extreme value distribution has not been considered before for the analysis and prediction of
terror insurgencies.

This paper is organized as follows. Section 2.1 introduces our motivating dataset, the Global Terrorism Database
previously considered by Tucker et al. (2019) and the different aspect of focus for this work. Section 3 presents our
novel and flexible marked point process framework and details the mark distribution choices made via a mixture
representation. It also discusses an inference approach based upon a novel application of Markov chain Monte Carlo
(MCMC) methods. Section 4 applies our model to data from the GTD and in difference to Tucker et al. (2019) we
focus on data from 2013-2018 corresponding to Afghanistan and illustrate the capability of our model in predicting the
intensity of future events. Section 5 gives our conclusions and discusses potential extensions of our work.

2 Data

2.1 Global Terrorism Database

The methodology proposed in this paper focuses on the Global Terrorism Database, GTD (2017). The GTD is an
open-source database which can be downloaded at https://www.start.umd.edu/gtd/, and includes information
on more than 190,000 terrorist attacks from 199 different countries occurring from 1970 to 2018. Along with the attack
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time (day, month and year) and location (latitude and longitude) of each recorded terrorism event, detail is also given on
the attack type, weapon(s) used, nature of the target, casualties, injuries, and the group responsible (when available).
While extreme value theory has been shown to be a valid approach for predicting the likelihood of catastrophic terrorism
events in Mohtadi and Murshid (2009), using a more limited data set than the GTD, these analyses had not been
extended to appropriately incorporate spatial or other critical descriptive information of the terrorism events.

Although the GTD contains numerous accounts of attacks, events are not consistently distributed evenly across the
globe or across time. Data limitations for some countries e.g. the USA and UK from which there is insufficient data,
additionally prove challenging for extreme value analysis (EVA). This therefore limits our focus to specific regions in the
world (e.g. countries) where more events occur and thus the resulting analyses can provide meaningful interpretations.
The thresholds which define extreme events will be region dependent as seen in Figure 1a which shows the number of
casualties per country for cases which reported the highest casualties due to terrorism events since 1970.

Data quality may also affect subsequent analyses of extreme events. For example, the GTD is incomplete and contains
missing entries on one or more of the explanatory covariates and time stamps of events. The spatial locations of events,
given by latitude and longitude, are estimated at the nearest city and thus can be inaccurate. As highlighted by Tucker
et al. (2019), these aspects of the data are important to account for when developing a statistical model. The data for
the year 1993 is completely missing and although there have been efforts to recollect this data, these have not been
successful. Additionally, it is possible that many countries, especially those with attacks recorded before 2000, have
underreported the severity of the attack. Including this data, therefore, would likely lead to misleading results. Although
the GTD (2017) team has made improvements of the methodology used to compile the database, by balancing the
strengths of “artificial and human intelligence” based on more diverse sets of news media from around the world, we
choose to omit this data from our analysis and focus on data from 2013 to 2018.

In order to develop an appropriate statistical framework for extreme global terror insurgency attacks, we first require an
extreme event to be defined and assess the viability of these distributions to fit the data. Depending on the question of
interest, an extreme attack could either be characterized as occurring in an unusual or unexpected space-time location,
or as an extremely rare type such as an event perpetrated by a new terrorist group or an event reporting a high magnitude
of fatalities or causalities. The former of the two requires a further definition of what constitutes as an “unexpected”
space-time location and could therefore be difficult to formally formulate in comparison to the latter. We therefore turn
to rare type modeling and begin, in a similar manner to Mohtadi and Murshid (2009), by defining an extreme attack as
one that results in a high reporting of casualties. The number of casualties here is calculated as the number of deaths
and injuries resulting from an attack.

On a country specific level, the countries which have sufficient data and quoted the most deadly attacks in the GTD are:
Iraq, Pakistan, Afghanistan, India and Colombia as shown in Figure 1a. Log scaled empirical cumulative distribution
functions (CDFs) and quantile plots shown in Figures 1b and 1c respectively, suggest that the distributions of casualties
reported from the most deadly countries (Iraq/Afghanistan, India/Pakistan/Colombia) are similar and heavy tailed.
These exploratory plots indicate that extreme valued type of distributions would be applicable for this data. Figure
2 shows the location of terrorist attacks across the region where the per-country number of casualties is above the
97% empirical quantile. The patterns observed in this figure give an indication that there is a significant spatial
contribution on the underlying distribution of extreme events in India, Afghanistan, Iraq and Pakistan, also rendering
that high-casualty events lead to clustered behavior.

3 Materials and methods

The temporal nature of terrorism events can be identified as being self-exciting in nature as described by (Mohler et al.,
2011; Mohler, 2013; Clark and Dixon, 2018; Tucker et al., 2019), indicating that events occurring in time are likely
to be dependent on any previous event in the history of the process. It is also understood that spatially, violent crime
activity is likely to occur in or around locations that have had previously successful attacks (Mohler et al., 2011). Such
behavior therefore induces clustering patterns and Figure 2 shows similar clustering for high causality events. On the
other hand, new terrorist activity often arises in regions with denser populations (Zammit-Mangion et al., 2012). Other
variables such as gross domestic product (GDP), ethnicity distribution and geographical terrain additionally indicate
regions that are prone to terror events and could be considered as explanatory variables.

To address the nuanced spatio-temporal behavior of terror events and the casualties that are reported from them, we
utilize a marked spatio-temporal modeling approach. This model considers a terror event as an attack taking place at an
arbitrary space-time location such that the mark of each event defined the number of casualties that occur from it.

Let {X(s, t,m) : s ∈W, t ∈ [0, T ],m ∈ N0} denote the marked point process of terror attacks indexed by the spatial
location s observed in a bounded region W , the continuous time t ≤ T , and the number of casualties m. The counting
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(a) Histogram of all casualties from countries with the high-
est casualties across all attacks since 1970.

(b) Empirical CDF.

(c) Quantile function.

Figure 1: Plots of all global casualties during 1970-2018.

measure of events associated with this process is denotedNX(A×M) = |X∩(A×M)| forA ⊆W × [0, T ],M ⊆ N0.
For any A×M , its intensity measure conditional on the history of the processHt is defined as the expected number of
events of X in A×M givenHt, i.e. as E(NX(A×M)|Ht). Its intensity function denoted λ(s, t,m|Ht) is related to
this measure via E(NX(A×M)|Ht) =

∑
m∈M

∫
A
λ(s, t,m|Ht) ds dt (Møller and Waagepetersen, 2004).

3.1 Intensity characterization

For a given time t and location s in our domain of interest (A = W × [0, T ]), the likelihood of an event with mark m
can be expressed through its intensity function, whose general form (Reinhart, 2017) is

λ(s, t,m;Ht) = fM (m;Zm(s, t))λ∗(s, t;Ht,Zs,t). (1)

Here, fM (m;Zm(s, t)) is a discrete probability density function for the marks given the mark covariates Zm(s, t)
observed at location s and time t. Further, λ∗(s, t;Ht,Zs,t) is the conditional intensity function of the spatio-temporal
process at time t ∈ [0, T ] and spatial location s ∈W given the history of eventsHt and spatio-temporal covariates Zs,t.
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Figure 2: PoT casualty data between 2002-2018. The locations shown corresponding to cases where the per-country
casualty level is above the empirical 97% quantile

3.2 Mark distribution

Prior data analysis studying continuous extreme valued distributions (GPD and GEV) to country level datasets provided
by the GTD, have shown good fits for the number of casualties (Patel et al., 2020). In particular, Patel et al. (2020)
detail that the GPD or POT approach provides the best overall fit to the tails of casualty data, caveatted by a requirement
for an exceedance threshold to be determined and the distribution’s prime suitability for continuous data. To deal with
this, we follow the work of MacDonald et al. (2011) and utilize a discrete mixture distribution that is able to model an
extreme number of (discrete) casualties produced from each attack and also its zero-inflated behavior, as highlighted by
the quantile behavior shown in Figures 1b-1c.

After fixing an exceedance threshold u ∈ N, we utilize a zero-inflated discrete distribution for all marks m ∈ [0, u]
below a threshold u that supports observations of attacks with a low number of casualties. Above u, we consider
a discrete extreme value distribution addressing attacks resulting in an extreme number of casualties. We model
fM (m;Zm(s, t)) via the mixture distribution

fM (m;πM , u,θZI ,θEV ) = πM
fZI(m;u,θZI)∑

m′≤u fZI(m
′;u,θZI)

1m≤u

+ (1− πM )
fEV (m;u,θEV )∑

m′>u fEV (m′;u,θEV )
1m>u, (2)

where fZI(m;u,θZI ,Zm(s, t)) denotes a general zero-inflated distribution to model the number of casualties up to
threshold u given parameters θZI and fEV (m;u,θEV ,Zm(s, t)) denotes a general extreme valued distribution to
model the number of casualties above u given parameters θEV . The parameter πM denotes the mixing proportion, or
weight, of the distribution corresponding to each case. For simplicity in notation, we drop the explicit dependence on
Zm(s, t) for both fZI and fEV .

3.2.1 Casualty model selection

Suitable probability mass functions for fZI include the zero-inflated Poisson (ZIP) and Negative-Binomial (ZINB)
distributions, both of whose parameters θZI can be written as functions of the exogenic covariates Zm(s, t). For all
m ≤ u, their probability distributions are given by

fZIP (m;u,θZI) = α1m=0 + (1− α)
λme−β

m!
α ∈ [0, 1], β > 0 (3)

fZINB(m;u,θZI) = α1m=0 + (1− α)

(
m+ r − 1

m

)
(1− p)rpm α, p ∈ [0, 1], r > 0. (4)
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Determining a form for fEV requires considering concepts from discrete extremal functions which are suitable to this
problem. Specifically, for m ≥ u, we consider the Generalized-ZIPF distribution (GZD) defined by Hitz et al. (2017) as

fGZD(m;θEV ) ∝


(

1 + ξ(m−u)
σ

)− 1
ξ−1

ξ > 0

exp
(
− (m−u)

σ

)
ξ = 0,

(5)

a flexible class of extreme valued discrete distributions decaying via the Zipf-Mandelbrot power-law (Mandelbrot, 1953).
Zipf’s law created by Zipf (1949) originally studied the distribution of word frequencies in common language and has
resulted in a wide range of Zipf-type distributions within different frameworks (Li, 1992). An advent of its usage in the
social sciences, for example, to analyze voting histories at different levels of social systems (Lyra, M. L. et al., 2003),
population densities in cities (Gabaix, 1999) and fake social media trends (Rastogi, 2016) complementing its extreme
valued properties, renders the GZD a suitable candidate in modeling extreme numbers of casualties resulting from terror
insurgencies. While the power law distribution utilized in Clauset and Woodard (2013) to quantify the probability of
high casualty-producing terror events belongs to a single parameter family, the GZD belongs to a two-parameter family
of distributions and can be seen as the discrete counterpart of the Generalized Pareto Distribution (GPD), giving extra
flexibility in model fitting and easily incorporating a threshold u, beyond which extreme events are modeled.

We performed preliminary studies considering casualty data from Iraq, Pakistan, Afghanistan, and India with combina-
tions of the zero-inflated Poisson/Negative Binomial distributions for fZI and the GZD/GPD distributions for fEV in
Equation 2. The available data for each country was fitted to our proposed distribution with maximum likelihood estima-
tion for the parameters θZI , θEV , π and u. Figure 3 shows fits of fM with either a zero inflated Negative Binomial or a
zero-inflated Poisson distributions for fZI for Iraq, Pakistan, Afghanistan, and India respectively. The threshold u was
considered at a few values indicated by vertical dashed lines and the combination of possible distributions/thresholds
assessed via the Akaike information criterion (AIC) as reviewed by (Cavanaugh and Neath, 2019). Distributional fits
measured by AICs, are shown on top of the casualty data histograms of each country. In all cases, AIC favors a ZIP
distribution for fZI and a GZD form for fEV , with a threshold of value u = 2. This is the mark distribution that will be
adopted in the remainder of the paper.

3.3 Conditional intensity

The conditional intensity λ∗(s, t;Ht) appearing in Equation (1) describes the instantaneous measure of a terror event
occurring at a space-time location (s, t) given historic events Ht occurring before time t. The self-exciting nature
of terror events renders a Hawkes type intensity Hawkes (1971), suitable for this conditional measure. The Hawkes
process formulation specifically addresses attributes of self-excitation or contagion, accounting for an arbitrary event’s
contribution to the likelihood of future event occurrence. This flexible model aspect has provided an important basis
for its broad utility and has seen application in modeling financial stock crashes and surges (Da Fonseca and Zaatour,
2014), predicting origin times and magnitudes of earthquakes (Ogata, 1988) and propagation of social media events
(Rizoiu et al., 2017). To do so, the Hawkes conditional intensity takes the general form (Reinhart, 2017)

λ∗(s, t;Ht) = µ∗(s, t;θµ∗) +
∑
ti<t

φ(t− ti, |s− si|,mi;θφ), (6)

whereHt denotes the history of the events and µ∗(s, t;θµ∗) is the baseline spatio-temporal intensity of terror attacks
and φ(·) denotes the triggering function, describing the self-exciting intensity of a future event given the space-time
locations and marks associated with previous attacks. Depending on the kernel φ(·), the excitation may be local or have
longer term effects in space and/or time (Hawkes, 1971). The terms θµ∗ and θφ denote hyper-parameters associated
with the baseline and triggering intensities, respectively.

In the following, we denote an individual event by its measured time, spatial location and casualty mark as xt :=
(sxt , t,mxt), and the point pattern of events as X = ∪txt: a realization of the conditional point process X(s, t;Ht).
The conditional intensity in Equation (6) describes the instantaneous probability of an arbitrary event xt belonging
either to the background via the intensity contribution of µ∗ or being triggered by a background point.

From this observation, we can consider a Hawkes process as a branching process (Hawkes and Oakes, 1974) of
marked spatial events ordered by their time stamps. Here, events are seen to arrive either through immigration or birth.
An immigrant corresponds to an event that results from the baseline intensity µ∗, whereas events that are caused by
self-excitation are birthed descendants from previous events, that are excited via the triggering kernel φ. We note that
when φ ≡ 0 almost everywhere, the Hawkes process as defined in Equation (6) reduces to an inhomogeneous Poisson
process with rate µ∗(s, t;θµ∗). In this manner, background points form the centers of inhomogeneous Poisson clusters
of triggered events drawn from the self-exciting kernel φ with respect to the immigrant event. The interested reader is
directed to Hawkes and Oakes (1974) for more information about this Cluster-based Hawkes Process.
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Figure 3: Comparisons of mark distributions fit with the GZD/GPD and ZIP/ZINB for Iraq (left, top), Pakistan (right,
top), Afghanistan (left, bottom) and India (right, bottom)
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The point pattern X can be therefore be succinctly written as the set union of the background Xµ∗ and triggered pattern
Xφ, written as

X = Xµ∗ ∪ Xφ
Xφ = ∪x′t∈Xµ∗Xx′t

,

where Xx′t
denotes the triggered pattern of inhomogeneous clusters from background point x′t ∈ Xµ∗ at arbitrary time

t ∈ [0, T ].

3.3.1 Baseline intensity

The baseline intensity µ∗(s, t;θµ∗) is intended to characterize untriggered terror events, for example, attacks that are
initiated by new insurgency groups. In the simplest case, a (constant baseline) homogeneous Poisson intensity i.e.
where µ∗(s, t;θµ∗) ≡ µ∗ describes a process in which the expected number of baseline attacks per unit area is µ∗. In
general, baseline attacks appear inhomogeneous across areas of interest, and are seen to be correlated with population
density, distance to nearest cities and other socio-economic factors (Zammit-Mangion et al., 2012). To deal with this
inhomogeneity and the addition of covariates that can be measured for each region, we model the baseline intensity as
an inhomogeneous Poisson process

µ∗(s, t;θµ∗) = exp(Z>s,tθµ∗),
where θµ∗ ∈ Rn is a vector of coefficients and Zs,t is a vector of recorded covariates. Covariates of interest
include population density, government voting statistics and number of different languages spoken at the district
level with GDP, geographical distances to nearest cities and terrains used at the country level. These covariates are
available from Statistical Year Books of countries of interest. In the case of Afghanistan, year books are available at
https://nsia.gov.af/library. Given a background point pattern Xµ∗ , the density of the inhomogeneous Poisson
intensity (with respect to the unit rate Poisson on W × T ) takes the form (Baddeley and Turner, 2000)

fµ∗(Xµ∗ ;θµ∗) =
∏

x′t∈Xµ∗

µ∗(sx′t , t;θµ∗) exp

(
−
∫
W×T

(µ∗(t′, s′;θµ∗)− 1)ds′dt′
)
, (7)

where the product is over all events with arbitrary time t ∈ [0, T ]. Given Xµ∗ , the point process density in Equation (7)
can be numerically maximized to determine θµ∗ . Here, the integral term can be computed using the quadrature scheme
described in Baddeley and Turner (2000) and permits a computationally efficient maximization algorithm.

3.3.2 Triggering intensity

In order to derive the log-likelihood associated with the triggered point pattern Xφ, it is necessary to understand the
baseline origin of such points within the cluster-based Hawkes formulation previously mentioned. In particular, the
marginal distribution p(Xφ;θφ) requires conditioning on all background events in Xµ∗ and data sequences Dφ from Xφ
that give time-ordered clusters of triggered events originating from a background point. Following Walder and Bishop
(2018), the log density of p(Xφ;θφ) is shown to follow

log p(Xφ;θφ) =
∑
d∈Dφ

∑
xu,xv∈d
u<v

{d3xs:s∈(u,v)}=∅

∑
x′t∈Xµ∗
t<u

log φ(δ(x′t,xu,xv))−
∫
W×[0,T−t]

φ(t′, s′,mx′t
)ds′dt′, (8)

where the second summand is over subsequent event pairs xu,xv with v > u and
δ(x′t,xu,xv) = (v − u, |sxv − sxu |,mx′t

).

This density utilizes the branching structure of the Hawkes’ immigration-birth formation through the clusters in Dφ
as additional variables to consider. Since Dµ∗ = D \ Dφ can be readily obtained from Dφ, the self-exciting and
background intensity parameters can be evaluated from their derived conditional distributions if this structure is known.

The triggering function φ(·) is typically written with a known parametric form. In the one dimensional case, Hawkes
(1971) proposed the triggering function to be an exponential decay function φ(s) = αe−βs with α, β > 0 or power law
functions of the form φ(s) = k

(c+s)p for k, c, p > 0.

For this problem, however, the nuances in terror insurgence excitation and uncertainty surrounding the quantitative
effect of historic events render non-parametric models to be more appealing. To show this explicitly, a simplified
non-parametric Hawkes process utilized in Mohler et al. (2011), with intensity

λ∗(s, t;Ht) = ν1(t)ν2(s) +
∑
ti<t

g1(t− ti)g2(|s− si|),

8
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was considered for exploratory data analysis. In relation to the generalized intensity function given in Equation (1),
we have in this case that µ∗(s, t;θµ∗) = ν1(t)ν1(s) and φ(t − ti, |s − si|,mi) = g1(t − ti)g2(|s − si|), where the
functions ν1, ν2, g1, g2 are to be determined. Empirically based kernel density estimates of the functions ν1, ν2 and
g1 fitted to Afghanistan’s terror events in the GTD are shown in Figure 4. It is seen here that the estimated functions
for the temporal background and triggering functions are highly nonlinear and difficult to parametrize. Additionally,
this approach cannot easily incorporate additional covariates Zs,t into the procedure, thereby owing to crude spatial
intensity estimates.

In order to better understand and characterize terror excitation, the demonstration in Figure 4 motivates our novel
method, presented next, for modeling the triggering function.

Figure 4: Nonparametric Hawkes intensity fits for Afghanistan (2013-2018): Estimated background temporal ν1(t)
(left), background spatial ν2(s) (center) and triggering temporal g1(·) (right) intensities.

Specifically, we place a Gaussian Process prior over the class of all triggering functions φ(·). In a similar manner
to the works of Flaxman et al. (2017), the triggering kernel φ(t − ti, |s − si|,mi) is written non-parametrically as
φ(·) = af2(·), where f is a Gaussian Process and a > 0, to ensure positivity of the intensity function. The covariance
function of f can be decomposed into its eigenvalues {λ̃1, λ̃2, . . . , } and eigenfunctions {e1(·), e2(·), . . . } via Mercer’s
theorem to give

k(x,y) =

∞∑
i=1

λ̃iei(x)ei(y).

The above representation implies that f(·) = ω>e(·), where ω ∼ N (0, Λ̃ = diag(λ̃1, λ̃2, . . . )) and e(·) =
[e1(·), e2(·), . . . ] (Zhang et al., 2018). In practice, a low-rank approximation of the above infinite sum is used to
ensure computational stability.

Typical examples of the covariance function k(x,y) include the Squared exponential k(x,y) = exp
(
−‖x− y‖2/2l2

)
with known λ̃i, ei(x) with respect to the Gaussian measure, the Rational quadratic, k(x,y) =(
1 + ‖x− y‖2/2αsl2

)−α
and the Periodic k(x,y) = 1 +

∑∞
m=1 2 cos(2πm(x−y))/(2πm)2s, on [0, 1] with known

λ̃i, ei(x) with respect to Lebesgue measure (Flaxman et al., 2017). Due to this characterization, not all covariance
functions have known Mercer expansions.

To deal with this, and to allow full flexibility in the choice of a covariance function for f , we utilize the work of Flaxman
et al. (2017). Specifically, for a positive definite kernel function k : S × S → R over a non-empty domain S, a unique
reproducing kernel Hilbert space (RKHS)Hk exists and defines a space of functions f : S → R from which f can be
represented by an inner product f(x) = 〈f, k(x, ·)〉Hk . Using this set-up, for triggering data xi ∈ Xφ arising from the
event xj ∈ Xµ∗ , the function f satisfies

f = arg min
f ′∈Hk

{
−
∑
i

log(af ′2(tj − ti, |si − sj |,mi)) + a

∫
W×T

f ′2(tj − t, |s− sj |,mi) ds dt+ γ‖f ′‖2
}
, (9)

including a regularization term γ that corresponds to the squared Hilbert space norm of f . The integral term of 9
does not however guarantee a solution with covariance k(x,y), stemming from the possibility of non-explicit Mercer
expansions belonging to the most flexible class of covariances. To deal with this, Flaxman et al. (2017) constructs an
alternative kernel k̃(x,y), which can be computed directly if the covariance function has an explicit Mercer expansion

9
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with respect to the Lebesgue measure. In general, using the covariance

k̃(x,y) =

K∑
i=1

ηi
aηi + γ

êi(x)êi(y),

leads to the existence of a solution f .

In the case when Mercer’s expansion is unknown, the adjusted eigenvalues ηi/aηi + γ and eigenvectors êi of kernel
k̃ are sampled via the uniform sampling approach described in detail in Flaxman et al. (2017) and briefly described
here. By scaling W = (0, 1)2, T = 1,M = (0, 1), a uniform form grid u over all possible values of s, t,m can be
constructed and the covariance function Kuu computed on the matrix. Implementing Lanczos iterations invokes the p
highest eigenvalues λ̃i and eigenvectors eui to be found of the truncated eigen-decomposition of Kuu. Finally, after
determining the covariance Kxu between data x and u, k̃(x,y) can be evaluated explicitly by computing

ηi =
λ̃i
p
, êi(x) =

√
p

λ̃i
Kxue

u
i .

The above representation thereby allows computation of φ(·) = af2(·), where

f(·) = ω>ê(·), ê(·) = [ê1(·) . . . êp(·)], (10)

ω ∼ N
(

0, Λ̃ = diag
(

η1
aη1 + γ

, . . . ,
ηp

aηp + γ

))
, ω ∈ Rp. (11)

Here, the unknown parameter set θφ = {θK ,ω, a, γ}, with θK containing all parameters of the intended covariance
structure, is to be determined.

3.4 MCMC estimation

Using λ(s, t,m;Ht) as given by Equation (1), the log-likelihood function of data X given the unknown parameter sets
θ1 = {π,θZI ,θEV } and θ2 = {θµ∗ ,θφ} is

`(θ1,θ2;X ) =

n∑
i=1

log

Z>s,tθµ∗ +
∑
tj<ti

φ(ti − tj , |si − sj |, ;mi)

+ log(fM (mi;θ1,Zm(s, t)))


−
∫
W×T

λ∗(s, t|Ht,Zs,t,θ2) ds dt. (12)

Since the intensity function comes in a separable form between the mark and spatio-temporal parameters, we can
estimate θ1 and θ2 in parallel. The parameter set θ2 can either be estimated through maximum likelihood methods or
via a Metropolis Hastings MCMC algorithm (MCMC). We elect here to use MCMC which samples θ1 from the mark
vector m = (m1,m2, . . . ,mn) via

p(θ1;m,Zm(s, t)) ∝ π(θ1)

n∏
i=1

fM (mi;θ1,Zmi(s, t)),

with the prior specifications

π(θβ), π(θξ), π(θσ) ∼ N (0, I)

log

(
1− α
α

)
, log

(
1− πM
πM

)
∼ N (0, 1).

We perform estimation of θ2 within a Bayesian Hierarchical framework using a hybrid Metropolis-within-Gibbs particle
MCMC algorithm. This utilizes the aforementioned branching structure of the Hawkes’ immigration-birth formation as
an additional variable, from which both self-exciting and background intensity parameters can be updated using the
conditional distributions we will henceforth derive.

Specifically, the branching variable, denoted B = {Ci}i consists of inhomogeneous Poisson clusters containing
information of all independent events Xµ∗ ∈ X immigrating from the background intensity function and the triggered
events Xφ ∈ X \Xµ∗ that are birthed from them. For example, having cluster C1 = (xt0 ,xt1 ,xt2) where t0 < t1 < t2,

10
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would imply that background event xt0 triggers subsequent events xt1 and xt2 and that this structure belongs to B.
From herein, we denote the background event triggering arbitrary cluster C as C0 ∈ Xµ∗ and the births as C>0.

In order to derive Gibbs conditional distributions parameters in θ2, the branching structure B must be sampled from.
Sampling B from its posterior p(B;X ,θ2) consists of computing probabilities that an arbitrary event xti is either an
immigrant or birth. To do so, we define the probabilities pij for all tj < ti as the probability event xti is triggered by
event xtj and pi0 as the probability event xti is birthed from the background. Using the intensity in Equation (1), we
have that

pi0 = µ∗(si, ti;θµ∗)

(
µ∗(si, ti;θµ∗) +

∑
tk<ti

φ(ti − tk, |si − sk|,mi)

)−1
(13)

pij = φ(ti − tj , |si − sj |,mi)

(
µ∗(si, ti;θµ∗) +

∑
tk<ti

φ(ti − tk, |si − sk|,mi)

)−1
tj < ti. (14)

These probabilities can be determined in each MCMC iteration given the current value of θ2 thereby enabling the
branching structure B to be sampled by sampling the clusters from these probability vectors.

Once B is updated, the algorithm then proceeds to sample from the background posterior p(θµ∗ ;X ,B,θ2) and
self-exciting posterior p(θφ;X ,B,θ2).

For the background density, we note that using the likelihood function given by Equation (7), we may update θµ∗ using
a Metropolis-Hastings step which samples from

p(θµ∗ ;X ,B,Zs,t) ∝ fµ∗(Xµ∗ |θµ∗)π(θµ∗)

π(θµ∗) ∼ N (0, I),

where Xµ∗ can be determined from X using B. We note that Gaussian priors are used where applicable for controlling
the efficacy of the subsequent MCMC algorithm(s) in accepting a theoretically optimal rate of samples.

We note here that in the case of a constant intensity θµ∗ resulting from a single constant background covariate, that a
Poisson-Gamma conjugacy structure may be used. Specifically, since |Xµ∗ | ∼ Poisson(θµ∗) can be determined from B,
we place

p(θµ∗ ;X ,B,θφ) ∝ p(Xµ∗ ; θµ∗ ,θφ)π(θµ∗)

π(θµ∗) ∼ Gamma(1, 1)

π(θµ∗ ; |Xµ∗ |) ∼ Gamma(|Xµ∗ |+ 1, 2|W × T |).

For the triggering parameters, we note that given B, the log density given in Equation (8) can be reduced to

log p(Xφ;θφ,X ,B) =
∑
C∈B

∑
xu,xv∈C>0

u<v
{C3xs:s∈(u,v)}=∅

log a(ω>ê(δ(C0,xu,xv)))
2 − a

∫
W×

[0,T−tC0
]

(ω>ê(t′, s′,mC0
))2ds′dt′. (15)

Given this, updates for the fixed parameters in θφ can be determined via

p(θφ;X ,B) ∝ p(Xφ;θφ,X ,B)π(θφ)

ω|a, γ ∼ N
(

0, Λ̃ = diag
(

η1
aη1 + γ

, . . . ,
ηK

aηK + γ

))
log(a), log(γ) ∼ N (0, 1).

In particular, the log posterior p(ω;X ,B,θφ) is given by

log p(ω;X ,B,θφ \ ω) = −K
2

log 2π − 1

2

(
log |Λ̃|+ ω>Λ̃−1ω

)
+

∑
C∈B

∑
xu,xv∈C>0

u<v
{C3xs:s∈(u,v)}=∅

log a(ω>ê(δ(C0,xu,xv)))
2 − aω>

∫
W×

[0,T−tC0
]

E(t′, s′,mC0)ds′dt′

ω,
(16)

11
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where for any s, t,m ∈W × [0, T ]× N0, the outer product of ê(t, s,m) is defined via

E(t, s,m) = ê(t, s,m)ê>(t, s,m).

We note here that computing the integral term in Equation (16) within the algorithm corresponds to∫
W×

[0,T−tC0
]

E(t′, s′,mC0
)ds′dt′ =

∫
W×

[0,T−tC0
]

ê(t′, s′,mC0
)ê(t′, s′,mC0

)>ds′dt′

=

∫
W×

[0,T−tC0
]

[√
p

λ̃1
Kxue

u
1 · · ·

√
p

λp
Kxue

u
p

] [√
p

λ̃1
Kxue

u
1 · · ·

√
p

λp
Kxue

u
p

]>
ds′dt′

≈ 1

M

M∑
i=1

[√
p

λ̃1
Kx′iu

eu1 · · ·
√
p

λp
Kx′iu

eup

] [√
p

λ̃1
Kx′iu

eu1 · · ·
√
p

λp
Kx′iu

eup

]>
, (17)

where theM importance samples or particles satisfy x′i = (ti(1− tC0
), |sC0

−si|,mC0
), si, ti are uniformly distributed

on W × [0, T ] and u is a fixed uniform grid in each iteration. Although Equation (17) denotes an approximation to
the true value of the integral, we note that using a renewed particle set {x′i}Mi=1 and even a renewed uniform grid
u at each iteration will yield an unbiased estimate of the true integral, for any M . Within an MCMC framework,
it is sufficient to compute an unbiased estimate of the log posterior(s) of interest (Christophe et al., 2010) when
computing Metropolis-Hastings acceptance ratios, resulting in matching MCMC convergence properties while limiting
the potentially large particle sample size usually required to achieve a favorable approximation.

Given the varying covariance structures that can be placed on the Gaussian process prior and the unbiased update form
for φ(·), our approach updates the parameter set θφ with a Metropolis-Hastings kernel. However, up to an arbitrary
rank p, studying the posterior distribution of Gaussian process parameter ω within this framework is challenging due to
potentially high dimensions and variability resulting from the modeling of such nuanced datasets. On the other hand, the
ability to differentiate (16) motivates an approach for updating ω using a Hamiltonian Monte Carlo (HMC) step, used
extensively in the literature to sample from challenging target distributions (Neal, 2011; Betancourt, 2018). Specifically,
by defining U(ω) = − log p(ω;X ,B,θφ \ ω) termed as the potential energy and the momentum vector ρ ∼ N (0,Σ)
providing the kinetic energy − log p(ρ; Σ), HMC is used to jointly sample ω and ρ using the Hamiltonian or the joint
negative log posterior given by

H(ρ,ω) = U(ω)− 1

2
ρ>Σ−1ρ.

The joint system (ω, ρ) consisting of current parameter vector ω and momentum ρ, initially sampled from its Gaussian
prior at each iteration, is evolved via numerical integration of the resulting Hamilton system of equations (Betancourt,
2018). This requires computation of ∂U(ω)

∂ω , which can be given by direct differentiation of Equation (16) as

∂U(ω)

∂ω
= Λ̃−1ω + 2

∑
C∈B

∑
xu,xv∈C>0

u<v
{C>03xs:s∈(u,v)}=∅

a∫
W×

[0,T−tC0
]

E(t′, s′,mC0
)ds′dt′

ω − ê(δ(C0,xu,xv))

ω>ê(δ(C0,xu,xv))

 . (18)

Once solved to find (ω∗, ρ∗), the solution is accepted with (Metropolis-Hastings’) probability min(1, exp(H(ρ,θ)−
H(ρ∗,θ∗))) to account for numerical integration errors that are typically encountered in practice.

4 Results

We first validate our inference method on simulated data to demonstrate its accuracy in estimating all unknown
parameters of the model. We then apply the method to study and predict terror insurgencies in Afghanistan based upon
event data detailed in the Global Terrorism Database between 2013 and 2018.

4.1 Simulated study

To study the accuracy of the developed MCMC inferential algorithm on the conditional intensity estimation, we provide
parameter estimates from a simulated example. In this study, 768 events were simulated on the unit hypercube from the
self-exciting point process with constant background rate µ∗ = 50 and with triggering prior covariance

K(x,y) = exp

(
−|tx − ty|

2

2l2t

)(
1 +
||(sx,mx)− (sy,my)||2

2αsls

)−αs
, (19)
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Figure 5: Posterior plots for all conditional intensity parameters estimated from our algorithm from simulated data.
Here, true values (blue) are shown alongside estimated values (red) and 95% credible intervals (black, dashed).

where λt = 0.3, λs = 1, α = 1 and a = 1, γ = 0.1. The background points were simulated by first generating
µ′ ∼ Poi(µ∗) and then uniformly sampling µ′ points over W × T × M . Second, for each background point
xc := (tc, sc,mc), inhomogeneous Poisson clusters with intensity φ(t − tc, |s − sc|,mc) for t > tc were generated
through rejection sampling that approximated the integrated intensity over the domain via importance weights. Last, the
marks were sampled uniformly on (0, 1).

Using this methodology, the particle MCMC algorithm was run to obtain 25000 samples after an initial burn in of
2000. Posterior parameter estimates for all unknown parameters in the spatio-temporal conditional intensity given
in Equation (1) were inferred by thinning of the Markov Chain at every tenth sample. Posterior distributions along
with posterior modes and 95% credible intervals for all parameters of interest are given in Figure 5. The true values
(blue) and the posterior mode estimates (red) are also shown in the figure. We notice that the most informative posterior
distributions correspond to the parameters λt, α and a also having posterior modes close to the true values. On the
other hand, while the posterior mode of γ is close to the true value, its distribution shows high variability with heavy
tails across its interval. The credible interval for µ∗ is much wider and contains its true value, caveatted by the fact that
the simulated background rate was estimated from a single realization of a Poisson(µ∗) variate, and is therefore subject
to high posterior variance. It is worth noting that for a relatively small point pattern, all simulated parameters are shown
to lie within their 95% posterior credible intervals.

4.2 Modeling Afghan terror (2013-2018)

We now detail model specificities and results used to portray terror insurgency patterns in Afghanistan between 2013
and 2018.
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4.2.1 Data preprocessing

The raw event data from the GTD for this study contains some missing values in the form of unknown event times (as
days), locations (as latitude/longitude values) and covariates. To deal with this issue, the data used was preprocessed
and missing values imputed through the Multivariate Imputation via Chained Equations (MICE) approach (Schafer,
1997) to generate a full dataset. Further, times were jittered uniformly across the day to become a continuous variable
needed in the model. Latitude and longitude values were also jittered using a Gaussian distribution centered around
their given coordinate with a small standard deviation, thereby adding some randomness to event data determined to
the nearest city of true event locations. To be able to use the aforementioned methodology in the computation of the
conditional intensity, we standardize the times ti ∈ [0, T ], locations si ∈W and marks mi ∈M to the unit hypercube
and post-scale the resulting spatio-temporal intensity by the area T ×W .

4.2.2 Model fitting

In this study, over 104 terror events were collected, data preprocessed and the analysis run with our model. To be able
to incorporate terror patterns that show dependence between spatial locations and casualties, an initial MCMC run
was used to represent the covariance for f(·) as the space-time separable function given in Equation (19), additionally
positing a shorter relative time scale for terror excitation. When estimated, however, prohibitively large values for αs
deemed the covariance function

K(x,y) = exp

(
−|tx − ty|

2

2l2t

)
exp

(
||(sx,mx)− (sy,my)||2

2l2s

)
,

more suitable to be used for this dataset.

The MCMC algorithm enabling estimation of the conditional intensity and mark parameters was run under these
specifications. For both MCMC algorithms, 50000 samples were computed after an initial burn in of 2000 and
parameters inferred by thinning of the Markov Chain at every tenth sample.

To account for the dependency of parameters θZI and θEV on potential mark covariates Zm(s, t), we write the
parameters of fM as functions of Zm(s, t) in the following way

β(s, t) = exp(Zm(s, t)>θβ) ξ(s, t) = exp(Zm(s, t)>θξ) σ(s, t) = exp(Zm(s, t)>θσ), (20)

where θZI = {α,θβ} and θEV = {θξ,θσ}.
For the mark distribution given by Equation (2), the hyper-parameters θZI and θEV were estimated using the forms of
the parameters given in Equation (20). Here, the general vector of covariates is chosen as

Zm(s, t)> =
(

1 t popcs,ỹ
exp(−a‖s− cs‖2)

)
,

where exp(−a‖s − cs‖2) denotes an inverse distance measure from spatial point s to its nearest city cs, a ∈ R and
popcs,ỹ

is the raw population estimate at cs in year ỹ, utilized to inform the number of casualties occurring within
proximity to denser populated areas.

While all three parameter sets θβ ,θξ and θσ were tested using this covariate form, anticipated over-parameterizations
invoked the Deviance information criterion (DIC) to be computed for parameter combinations that excluded certain
parameters conveying posterior modes close to zero. By defining the deviance function as (Spiegelhalter et al., 2002)

D(θ1) = −2 log p(θ1;m,Zm(s, t)),

the DIC is given by
DIC = 2D(θ1)−D(θ̂1),

where θ̂1 denotes the modal value of the parameter vector θ1 and D(·) denotes the mean deviance. This criterion is
particularly useful since the first expression can be easily calculated as the average deviance over the obtained MCMC
samples, and the second as the deviance evaluated at their corresponding MAP estimates. Similarly to the well known
Bayesian Information Criterion (BIC), the model with the smallest DIC value is favored. Using this criterion, we found
the most suitable model regulating the mark distribution, as shown in Equations (2) and (20), is parametrized via

β(s, t) = exp(θβ,1 + θβ,tt+ θβ,cpopc,ỹ exp(−aβ‖s− cs‖2)) (21)

ξ(s, t) = exp(θξ,1 + θξ,tt) (22)
σ(s, t) = exp(θσ,1 + θσ,tt+ θσ,cpopc,ỹ exp(−aσ‖s− cs‖2)). (23)

For casualties over the space-time unit hypercube, this parameterization resulted in the posterior estimates and 95%
credible intervals presented in Table 1.
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Parameter Estimate 95% CI Parameter Estimate 95% CI
πM 0.415 (0.406, 0.425) θξ,1 −0.744 (−0.904,−0.570)
α 0.131 (0.099, 0.149) θξ,t 0.311 (−0.136, 0.712)

θβ,1 0.648 (0.542, 0.774) θσ,1 1.233 (1.150, 1.319)
θβ,t −0.539 (−0.815,−0.256) θσ,t 0.953 (0.763, 1.180)
θβ,c −0.507 (−0.687,−0.324) θσ,c 0.202 (0.066, 0.368)
aβ −0.126 (−1.741, 1.971) aσ 0.393 (−1.728, 2.033)

Table 1: Posterior estimates and 95% credible intervals for parameters in β(s, t), ξ(s, t) and σ(s, t) (see Equations
(21-23)) of the mixed mark distribution given in Equation (2).

For the self-exciting model, the baseline intensity is assumed to have the form µ∗(s, t;θµ∗) = exp(Z>s,tθµ∗), where
the vector of covariates

Z>s,t =
(

1 xs ys x2s y2s t Pop.denss,t Alts Langs Elect.opps,t
)
,

includes a log-quadratic contribution of the locations to add extra spatial curvature to the resulting intensity. Further,
population density Pop.denss,t, altitude Alts, number of languages spoken Langs and the density of population
supporting the opposing government Elect.opps,t, at location s and time t (where applicable) are included as measurable
variables affecting the rate of insurgency. Population and altitude covariates have been used successfully to study
events detailed in the Afghan war dairy (Zammit-Mangion et al., 2012), and here extended to account for continuous
spatial variables by exploiting the absolute distance to the nearest city within a province where the covariable has been
measured. Further, language distribution and density of population supporting the opposing government were added
to account for the effects of ethnic diversity and Taliban repression on civilians to control the country’s governing
(Tuerk, 2019). Other covariates including density of civil workers, yearly district revenue and population density in
support of the governing party that were initially tested, invoked poor fits due to missing values and were therefore
subsequently removed from the model. Unknown covariates, including those measured yearly such as population
densities, were linearly interpolated to create a full dataset of values over continuous time. Covariates were found from
https://nsia.gov.af/library and https://www.iec.org.af/results/en/home.

While the baseline kernel parameters θµ∗ were updated using a standard Metropolis-Hastings with a Gaussian proposal
adjusted to conceive an approximate 23% acceptance rate, sampling the triggering parameters θφ \ω in a similar fashion
resulted in poor mixing due to high correlations induced by the Gaussian process formulation. Further, formulating
a similar HMC algorithm used to update ω anticipated analytical challenges due to heavy computations of the log
likelihood derivative. To deal with this, we implemented the Adaptive Metropolis (AM) algorithm which is able to
exploit the inherent correlation structure between the parameters of θφ \ ω. This algorithm constructs a random walk
proposal centered at the previous sampled value and using the empirical covariance of previously accepted samples. A
further description of this sampler, including a proof detailing its ergodicity, can be found in Haario et al. (2001).

For marked spatio-temporal events over the unit space-time hypercube, inference of θφ utilizing the AM algorithm
resulted in the posterior densities presented in Figure 6. The correlation between lt and ls appearing in the Gaussian
process covariance K(x,y) utilized for this dataset is shown by their similarly shaped heavy-tailed posteriors, also
highlighting nuanced spatio-temporal insurgency patterns in Afghanistan between 2013-2018. On the other hand,
the lower posterior mode of log(a) in comparison to θµ∗ emphasizes the importance of the baseline intensity and its
regulating covariables in measuring insurgent events, primarily arising in densely populated areas and districts with low
civilian support for insurgent repression. Nonetheless, the relatively high magnitude of triggering events reflected by
log(a) confirms succinct self-excitation patterns across varying scales in space-time, reflecting organized terror events
by such groups invoking violence for insurgency success. For the conditional intensity, posterior estimates and 95%
credible intervals of θµ∗ and θφ are presented in Table 2.

Results using our methodology and posterior parameter estimates are shown in Figure 7, where the space-time intensity
is computed using importance samples of the time variable across the year, therefore presenting average yearly intensities.
This intensity is then transformed back to its original units of the observation windows T ×W ×M and shown on the
log-scale. Here, the spatio-temporal intensities of attacks leading to more than 20 casualties across the region between
2013 and 2018 are shown, along with recorded events. In line with (Zammit-Mangion et al., 2012), we see higher
intensities along areas targeted by terrorists along the country’s “ring-road” which visits Kabul, Kandahar, Herat and
Balkh, as shown in Figure 8. An increase in extreme attacks resulting from such activity suggests the gradual insurgence
in districts that follow this road.
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Figure 6: Posterior density plots of the triggering intensity parameters θφ, with the posterior modes (red) shown with
95% credible intervals (black).

Parameter Estimate 95% CI Parameter Estimate 95% CI
θµ∗,1 8.413 (7.284, 8.523) log(lt) −1.339 (−3.760, 7.729)
θµ∗,xs 2.830 (2.343156, 3.812476) log(ls) 0.1221 (−2.042, 27.586)
θµ∗,ys 8.140 (7.705, 10.239) log(a) 4.937 (3.55, 7.811)
θµ∗,x2

s
−1.862 (−2.712,−1.078) log(γ) −5.867 (−6.628, 6.716)

θµ∗,y2s −8.315 (−10.536,−7.821) ω1 −0.0061 (−0.170, 0.064)
θµ∗,t −0.190 (−0.392,−0.037) ω2 −0.0161 (−0.225, 0.059)

θµ∗,Pop.denss,t 1.235 (1.152, 1.843) ω3 −0.0068 (−0.094, 0.097)
θµ∗,Alts −1.196 (−1.402,−1.094) ω4 −0.0015 (−0.164, 0.021)
θµ∗,Langs 0.047 (0.036, 0.103) ω5 −0.0004 (−0.208, 0.028)

θµ∗,Elect.opps,t −0.879 (−1.253,−0.802) ω6 8.71923× 10−5 (−0.0193, 0.0314)

Table 2: Posterior estimates and 95% credible intervals for parameters in θµ∗ and θφ, appearing in the conditional
intensity function log likelihood (see Equation (12)), as determined using a hybrid MCMC approach.

4.3 Extreme Afghan terror prediction 2019-2021

To be able to predict future events in 2019, 2020 and 2021 for which there is no data in the GTD, the time variable T
was extended to December 31st 2021. Figure 9 shows predicted yearly spatio-temporal average intensities of attacks
(log-scaled) leading to 20 or more casualties across the region between these years and confirms the fitted intensities for
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Figure 7: Afghanistan spatial-temporal intensity (log-scale) fits for attacks producing at least 20 casualties, between
2013-2018 with events shown as black diamonds.

the previous years in a forecasted surge of attacks, leading to the recent insurgency success. This is especially heightened
around the “ring-road” previously mentioned, with the extremity of insurgent terror around the district of Kabul shown
to be increasing, more than doubling the yearly average extreme casualty (≥ 20) intensity of 0.001 in 2013 to a predicted
of 0.112 in 2021, over pixelated grids of 0.06× 0.1 longitude/latitude units. This increase in attacks also focuses on
regions that have not previously seen much terror activity. These areas include the North-eastern Badakhshan Province,
a mountainous region which recently has seen increased presence of the Uyghur armed insurgency group, the East
Turkestan Islamic Movement (Devonshire-Ellis, 2021). In particular, in this region lies the Wakhan Corridor, connecting
Afghanistan to neighboring countries and has been subject to recent road plannings by the Chinese government, as
part of the Belt and Road construction (Goulard, 2021), for greater market access. Figure 8 shows a disrict map of
Afghanistan. Amiri (2017) shows a planned map of new roads to have been developed since 2017, of which districts in
the north and center of Afghanistan had been planned for greater infrastructure, aligning closely with an increased risk
of terror insurgence predicted by our model. Our analysis therefore emphasizes the increase in extreme terror related
activities from new insurgent groups and infrastructure developments.
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Figure 8: Afghanistan districts by name. Planned new road developments in Afghanistan in 2017 (Amiri, 2017)
highlight districts in which increased extreme terror activity has been predicted by our model (see Figure 9).

Figure 9: Afghanistan spatial-temporal predicted intensity (log-scale) for attacks producing at least 20 casualties,
between 2019-2021.

5 Conclusion

In this paper, we have formulated a flexible spatio-temporal model to study extreme terror insurgencies and study
Afghanistan between 2013 and 2021 to show the effectiveness of our model. Our framework importantly focuses on
quantifying the risk of extreme attacks using a mixed distribution comprising a discrete extreme-valued and a zero
inflated model of casualties produced per attack. By incorporating this measure on casualties defined as marks within a
spatio-temporal point process framework, the conditional modeling of spatio-temporal trends of extreme insurgencies
has been developed. Here, a self-exciting model for terror attacks and resurgences has been constructed through
an inhomogeneous Poisson baseline and a Gaussian Process formulated triggering kernel. The former accounts for
important covariates related to standard terror behavior, which in the study of Afghanistan includes population density
at the country’s district level and voting density for the opposing government. The latter develops a flexible prior over
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all Gaussian Process covariance structures to determine triggering functions that can succinctly incorporate nuanced
terror patterns observed in both space and time. All unknown parameters of the model are quantified via a hybrid
particle MCMC algorithm which utilizes Mercer’s approximation to Gaussian Process covariances. Spatio-temporal
prediction of extreme terror insurgencies in Afghanistan using our model, corroborate strongly with recent insurgent
events in the country and infrastructure developments that had planned to take place in areas previously unperceived to
terror.

The methodology we have developed provides a basis for several technical extensions. For example, the handling of
missing data as studied in Tucker et al. (2019) for the GTD could be fully accounted for in the constructed MCMC
algorithm, however, is likely to suffer from severe computational drawbacks when analyzing much larger datasets than
those studied in this paper. A potential scope for future research would therefore be to investigate avenues providing
faster inferential schemes or approximate inference that are compatible with the Gaussian Process methodology we
have presented and the missing data problem inherent to the data. Further, differing covariance structures could be
studied by our broad methodology to analyze the effect of the unknown triggering function on the overall organization
of planned events.

While this paper focuses on developing a self-exciting point process framework for characterizing spatio-temporal terror
patterns of insurgency and their societal risk, the flexibility inherent to our model is likely to be applicable to a broad
range of events that are observed in space-time and produce a measurable outcome of interest. For example, stochastic
processes underlying stock market return data, extreme weather conditions and cyber-network traffic events could all
benefit from our model formulation and inference mechanism to model and predict the risk of extreme events. The
novel inclusion of the nonparametric Gaussian Process prior placed upon the triggering kernel particularly highlights
the applicability of our work to understudied self-exciting processes that are beyond the scope of this paper.
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