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Abstract
Satellite imagery can detect temporary cloud trails or ship tracks formed from aerosols emitted from large ships
traversing our oceans, a phenomenon that global climate models cannot directly reproduce. Ship tracks are observ-
able examples of marine cloud brightening, a potential solar climate intervention that shows promise in helping
combat climate change. In this paper, we demonstrate a simulation-based approach in learning the behavior of ship
tracks based upon a novel stochastic emulation mechanism. Our method uses wind fields to determine the move-
ment of aerosol-cloud tracks, and uses a stochastic partial differential equation (SPDE) to model their persistence
behavior. This SPDE incorporates both a drift and diffusion term which describes the movement of aerosol par-
ticles via wind and their diffusivity through the atmosphere, respectively. We first present our proposed approach
with examples using simulated wind fields and ship paths. We then successfully demonstrate our tool by applying
Approximate Bayesian Computation method - Sequential Monte Carlo (ABC-SMC) for data assimilation.

Impact Statement
The impact of aerosol injections as potential solar climate intervention strategies is poorly understood due
to largely unobserved aerosol-cloud interactions. One of few observable examples are temporary cloud trails
produced by ship emitted aerosols. This work focuses on mathematically modeling satellite observations of
ship induced aerosol injections and leveraging it to learn underlying parameters characterizing their behavior.

1. Introduction
For decades, satellite imagery has been able to detect ship tracks, temporary cloud trails created via
cloud seeding by emitted aerosols of large ships traversing our oceans. Ship tracks are of interest
because they are unintentional and observable examples of marine cloud brightening, a potential solar
climate intervention (e.g. Latham, 1990; Council, 2015; Gunnar et al., 2013). Ship tracks portray the
ability of anthropogenic aerosols to perturb boundary layer clouds enough to alter the albedo of the
atmosphere, usually brightening the surrounding clouds (Twomey Effect, Twomey et al., 1966; Dia-
mond et al., 2020), and thus contribute to indirect radiative forcing (Capaldo et al., 1999; Eyring et al.,
2010). This phenomenon has become more frequently observed as satellite technology has significantly
improved since ship tracks were first observed by Conover (1966) and Twomey et al. (1966). Using the
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Figure 1. Visible ship tracks (left) on April 12, 2019 compared with no visible tracks (right) on April 7,
2019 with 3 hours of known ship locations (shown in red). Images (5000km × 3000km) taken at 12:00
GMT with ABI spectral band C06 off the coast of California.

recently deployed GOES-R geostationary satellite series1, tracks have been observed in the atmosphere
throughout the year, sometimes persisting more than 24 hours before mixing back into the atmosphere.

Although ship tracks have been actively studied since the 1960s, indirect radiative forcing, amongst
other differences to cloud properties, contribute to the largest sources of uncertainty regarding overall
radiative forcing in climate models (Carslaw et al., 2013). Current understanding of the specific cloud
effects from aerosol injections come from physical simulations under pristine conditions, not represent-
ing reality. In climate simulations of this phenomenon, aerosol injections are initiated by the user at a
known location in fully defined environments (Wang et al., 2011; Berner et al., 2015; Possner et al.,
2018; Blossey et al., 2018). Satellite-observed tracks, however, form in complex dynamic environments
that are challenging and expensive to replicate in physical simulations.

Inferring track behavior from observations comes with many challenges. Track visibility and per-
sistence are highly dependent on atmospheric conditions (Possner et al., 2018) and inconsistent data
availability can also cause tracks to be poorly observed. Due to complex atmosphere dynamics along
with variations in fuel types and concentrations, not all emission bursts will produce visible tracks (see
Figure 1). Interruptions in the visibility of an existing ship track can occur when ships pass under dif-
ferent atmospheric conditions. Further, vertical transport of the aerosols between the ship’s smoke stack
and the boundary clouds is largely unknown and unobserved. The exact altitude of the boundary clouds
in which ship tracks are visible and the time lag between an aerosol burst released from a ship, largely
depends on complex weather and cloud dynamics. While the height can be approximated using satel-
lite retrieval or reanalysis products, the time lag is difficult to infer from satellite images whose spatial
resolution is greater than a kilometer. To the naked eye, new ship track observations appear in images
directly above known ship locations due to the imaging resolution. Hence, it is reasonable to assume
that the vertical transport path from ship to boundary layer occurs at the same latitude/longitude. We
thus implicitly impose a known time lag between ship emissions and their first detection.

In this work, we present a computationally efficient, statistical approach to emulating and learning
the observed formation and behavior of ship tracks, based upon an advection-diffusion model. Aerosol
diffusion models are either driven by the chemical evolution of aerosol composition (e.g., Riemer et al.,
2008; Sofiev et al., 2009) or rely upon physical intuition and/or numerical discretization for evaluating
a diffusion coefficient (e.g., Stein et al., 2015; Wang et al., 2020). These methods, however, are val-
idated using limited data collected by targeted campaigns leading to high model sensitivity to cloud
and aerosol properties. To the best of our knowledge, few attempts have been made to simulate direct
aerosol injections in non-pristine modeling environments, limiting our ability to drive down the known

1GOES-R is operated by the National Oceanic and Atmospheric Administration (NOAA) and the National Aeronautics and
Space Administration (NASA).
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model uncertainties. Importantly, our approach’s ability to learn underlying parameters from observa-
tions highlights the power of passively observed data. Specifically, applying our approach to simulated
data under controlled settings will enable studying cloud changes from track formation in imagery.

For a given ship, we consider modeling each aerosol emission burst as a single target and assume
the ship is continuously emitting bursts. Each target is transported vertically from the ship through the
atmosphere until it reaches a specific altitude near the cloud top height at which the target can become
visible to orbital satellites and form linear tracks in a cloud. Ship track formations will then move with
wind dynamics, a variable that is straight-forward to simulate and is independent of ship movement.
The visible tracks then persist in the clouds for an unknown time as ship tracks, until the aerosols
are fully diffused into the atmosphere and are no longer distinguishable from the surrounding clouds.
Figure 2 outlines the general behaviors of the aerosols that are (un)observed via satellite. In this figure,
the green box represents the portion of the track formation process that is visible via satellite.

The remainder of this paper is organized as follows. Section 2 outlines our emulation approach.
Section 3 discusses parameter learning. Section 4 provides simulated examples. Lastly, Section 5
considers potential impacts of this research and directions for future work.

2. Modeling aerosols using a Hidden Markov Model (HMM)
To model the formation and behavior of the aerosol tracks, we construct a state-space point process
model relating imaging observations of ship tracks to true aerosol emission bursts.

2.1. State-space representation
The true emission path is generated by continuously emitted aerosol emission bursts or particles by
a single ship over the spatial window X ⊂ R2 up to time t ∈ [0,N∆] where N is the number of
frames and ∆ > 0 is the time between frames n and n + 1 (typically between 5 and 15 minutes).
A (Lagrangian) particle here is a mathematical object that carries mass in space at a specific time; it
models a group of aerosol molecules with distinct mass. The unobserved spatio-temporal point process
denoted {Xtn : (x, y, tn) ∈ R2 × R} characterizes the set of unknown cardinality and true positions of
aerosol emission particles, continuously released prior to (and still visible at) time tn. The observed
point process {Ytn : (x, y, tn) ∈ R2 ×R} characterizes positions in satellite imagery containing observed
ship tracks in image frame n generated by Xtn . For ship k = 1 . . .K which produces a track, we assume
that its entire emission path is comprised of Pk > 0 aerosol particles, all of which reach the boundary

Figure 2. Observable and unobservable behaviors of aerosol emissions from satellite sensors2.

2Image available at https://ral.ucar.edu/staff/jwolff/aerosols.html/intro.html.

https://ral.ucar.edu/staff/jwolff/aerosols.html/intro.html
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layer clouds. Assuming that only ktn of K ships have entered the window X by time tn < T , for an
arbitrary single track k ≤ ktn , only pk ≤ Pk particles are expected to become visible. We denote the
unobserved point process of true particle positions at time tn as Xtn = {{xi,tn }

pk
i=1}

ktn
k=1.

Existing ship tracks are modified at the next time step tn+1 in three possible ways: The oldest aerosol
emissions at the end of the track diffuse completely and mix back into the atmosphere (leaving no
detectable trace), surviving particles diffuse and become less distinguishable as part of the track, and
new particles appear at the front of the track in the direction of ship movement. These situations result
in pktn+1

new locations {xi,tn+1 }
pktn+1
i=1 in each of the new and existing emission tracks at tn+1. In prac-

tice, the full lifespan (from first appearance to permanent disappearance) of each emission particle is
unknown. Instead, at each observed image frame n, a partial observation of the track within surround-
ing clouds is captured by the satellite sensor without information on age of its particles. For track ktn
therefore, a set of oktn ≤ pktn observations Ytn = {{yi,tn }

ok

i=1}
ktn
k=1 is recorded, where yi,tn ∈ X.

At time tn, a newly observed track can be generated from newly released emission particles from a
new ship. Due to complex atmospheric dynamics, it is not often possible to link new observations to a
source; an observed track is not always visible directly above a ship. Thus, we assume that there is no
information about which emission particle generates which observation. We now specify a simulation
modelMθ relating states {Xti }

N
i=1 from their observation sets {Yti }

N
i=1 generated by parameters θ.

2.1.1. Multi-target state model
First, we define the three cycles of an aerosol particle: survival ensuing motion and diffusion through
the atmosphere, birth of new particles and death, a particle’s permanent disappearance.

After an aerosol track has already formed at time tn−1, if an arbitrary associated emission particle
xtn−1 ∈ Xtn−1 survives to time tn > tn−1, its subsequent state is determined by a drift function which is
described by the wind velocity µ(xtn−1 ) at xtn−1 , and a diffusion term σ(xt )which describes the diffusion
of the emission particle within the clouds it is situated in. This evolution describes a Markov diffusion
process and is described by the (continuous time) stochastic partial differential equation (SPDE):

dxt = µ(xt, t)dt + σ(xt )dBt, (1)

where Bt ∼ N2(0, tI2) denotes a standard Brownian motion in two dimensions, with I2 denoting the 2-
dimensional identity matrix. While the drift (wind velocity) is generally known, the diffusion function
σ(xt ) ≡ σx is set to be an unknown constant that describes the diffusivity of an aerosol parcel within the
atmospheric boundary layer, and is to be learned from data. To avoid solving (1) with computationally
expensive numerical methods, we assume that ∆ is taken small enough so that the wind velocity within
each interval In := (n∆, (n + 1)∆] n ∈ Z+ is approximately constant. With this and given state xs at s ∈
In, the SPDE dxt = µ(xt )dt+σxdBt for s < t ∈ In, can be solved via xt−xs =

∫ t

s
µ(xt ) dw+σx(Bt−Bs)

xt − xs = µ(xt )(t − s) + σxBt−s Bt−s ∼ N2(0, (t − s)I2). (2)

In particular, the particle’s transition density from xtn−1 to xtn is given by f M
tn |tn−1

(xtn |xtn−1 ) = N2(xtn−1 +

µ(xtn−1 )∆, σ
2
x∆I2), modeled by the point process Stn |tn−1 (xtn−1 )

Stn |tn−1 (xtn−1 ) =

{
xtn where xtn ∼ f M

tn |tn−1
(·|xtn−1 ) with probability pS,tn (bxtn−1

)

∅ otherwise,
(3)

where pS,tn (bxtn−1
) denotes the probability that particle xtn−1 will survive (be visually trackable) at tn.

A new emission particle at time tn ∈ R can arise either as a spontaneous birth (of a newly risen
emission) independent of any existing tracks, or via spawning from an existing emission source (e.g. at
the head of an existing track), resulting in a newly visible emission particle. The birth time of particle
xtn observed at time tn is denoted bx. Spontaneous births at time t are denoted by the finite point process
Γt , modeled as a Poisson point process (Mahler, 2007) with intensity function γt (x) = λγt fb,t (x),
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where for x ∈ X, Γt ∼ Poisson(λγt fb,t (x)). Here, Nb,t ∼ Poisson(
∫
X
λγt fb,t (x)dx) denotes the number

of births occurring in X at time t and fbt (x) denotes their spatial distribution. We may assume that if
xb,tn is the position of a new ship at time tn, then fbtn+εb

(x) = N2(xb,tn , σ2
b
I2)where εb denotes the time

lag between ship emission and aerosol observation at the boundary layer. On the other hand, spawned
births occurring within In−1 denote newly visible particles from existing tracks that reach the cloud
top layer at time tn. These can only be spawned by particles birthed in [tn − εb, tn], as this models the
continuous emission of aerosol particles in a single stream. In this paper, we model the set of spawned
births Btn |tn−1 (xtn−1 ) at time tn from a particle xtn−1 as a Bernoulli point process (Mahler, 2007)

Btn |tn−1 (xtn−1 ) =

{
{x}; x ∼ f β

tn |tn−1
(x|xtn−1 ) with probability pβ,tn tn−2 < bxtn−1

≤ tn−1

∅ otherwise.

Knowledge of ship positions (e.g. via SeaVision3) when observing tracks being formed, motivates
using the spawning density f β

tn |tn−1
(x|xtn−1 ) = N2(xb,tn−εb , σ2

βI2). Since the spawning probability pβ,tn
is directly related to the number of aerosol particles emitted, for simulation purposes, we assume that
each ship continuously emits aerosols in X up to time T = N∆, enabling pβ,tn = 1(tn ≤ T).

Given Xtn−1 at time tn−1, each particle x ∈ Xtn−1 with birth time bx, either continues to be visually
trackable to tn with probability pS,tn (bx), or “dies” with probability 1− pS,tn (bx). Here, a “death” of an
emission particle occurs when it sinks back through the atmosphere and ceases to be visible. Further,
its survival probability is solely a function of its persistence time, since the effects of up and downward
drafts in the atmosphere on each particle render spatial effects negligible. We assume that each ship
produces a cloud-aeorosol track that has an average lifetime Td ∼ Exp(λT ) from birth. Given Td ,
individual aerosol particles contained in its emission then each have an independently and identically
distributed (i.i.d.) death time d ∼ Log-normal(µd = logTd(σ

2
pd
+T2

d
)−1/2, σ2

d
= log(σ2

pd
+T2

d
)/T2

d
,where

σ2
pd

is the variance of particle death time, a fixed simulation input requiring estimation from data.
Altogether, we have Xtn = [∪x∈Xtn−1

Stn |tn−1 (x)]∪[∪x∈Xtn−1
Btn |tn−1 (x)]∪Γtn over independent unions.

2.1.2. Multi-target observational model
Here, we describe a finite point process model for the time evolution of the set {Ytn }

N
n=1 generated from

emission tracks {Xtn }
N
n=1 and observed over images {Ytn }

N
n=1.

An arbitrary observation ytn ∈ Ytn of unknown particle xtn ∈ Xtn is generated from a Gaussian
density centered at xtn , with covariance taken to be the marginal covariance of xtn . Its marginal density
can be calculated via f (xtn ) =

∫
X

f M
tn |bx
(xtn |xbx )π(xbx ) dxbx with π(xbx ) being the initial probability

density of particle xtn at the time of its birth. In this paper, we take π(xbx ) = δ(xbx ), the dirac delta
function centered at xbx , yielding ytn |xtn ∼ N2(xtn , σ2

x (tn−bx)I2). For image observations, we discretize
this such that the pixel intensity of a pixelYtn (P), denoted Itn (P), follows Itn (P) ∝

∑
x∈Xtn

∫
P

f (y|x)dy
with normalization constant given by the highest pixel intensity across the video.

A particle x ∈ Xt , at time t is only detected by a satellite sensor with probability pD,t (x). This
detection probability has a spatio-temporal dependence structure which is needed to first, model the
spatial randomness of cloud humidity and second, to account for cloud movement acrossX. If the cloud
humidity is too low or too high, emission particles cannot be detected. In the former case, particles
cannot be observed since clouds cannot form to produce the necessary observations. In the latter, the
cloud density may be too high, or may already be contaminated with existing aerosols which would
subsequently not produce observations of new particles. To deal with this, we choose to model pD,t (x)
as a function of the existing cloud humidity, formulated by modeling baseline pixel intensities measured
by the satellite sensor and utilizing a lower and upper threshold ιL, ιU . In particular, setting pD,tn (x) =
1(ιL < Itn (x) < ιU ), enables a particle to be observed with probability one if its true location x
lies within a pixel of the nth frame with an intensity Itn (x) ∈ (ιL, ιU ), sufficient for its observation.

3SeaVision data based upon Automatic identification systems (AIS) available at https://info.seavision.volpe.dot.gov/.

https://info.seavision.volpe.dot.gov/
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Subsequently, the observational point process Θtn (xtn ) from an emission particle xtn ∈ X follows

Θtn (xtn ) =

{
{y} where y ∼ ytn |xtn with probability pD,tn (xtn )
∅ with probability 1 − pD,tn (xtn ),

(4)

specifying multi-target observations Ytn =
⋃

x∈Xtn
Θtn (x) observed within pixelated images {Ytn }

N
n=1.

3. Data assimilation and parameter learning
In this section, we discuss a method for data assimilation and learning underlying parameters of the
model from satellite observations, based upon the ship track emulation tool proposed here.

The emulation model Mθ comprises of parameters θ that require estimation from data. Typical
methods of data-driven estimation extend standard filtering approaches (Kalman, 1960) to the point
process domain by utilizing Cardinalized Probability Hypothesis Density (CPHD) filters (e.g., Vo et al.,
2006). These not only allow for efficient estimation of the cardinality and states of the underlying point
process, but can be leveraged for statistical parameter learning (e.g., Jiang et al., 2015). Unfortunately,
utilizing filtering approaches for this problem requires extracting the observations {Ytn }

N
n=1 from rela-

tively coarse satellite images with pixels containing overlapping tracks, a highly challenging problem.
To alleviate this, we propose accurate simulation-based learning via Sequential Monte Carlo within an
Approximate Bayesian Computation (ABC-SMC) approach, described in detail in Toni et al. (2009).

ABC-SMC works as follows. At iteration τ = 0, parameters are sampled from a prior density θ(0)j ∼

π(θ) until M datasetsY j ∼ M
θ(0)j

are within a tolerance ετ of the observed datasetYd . This is computed

over the sequence of images via the chosen distance function

∆(Yd,Y j) =

N∑
n=1

∑
P

(Yd
n (P) − Y

j
n (P))

2.

For τ = 1, . . . ,NMC , tolerances ετ < ετ−1 are chosen and θ∗j ∼ {θ
τ−1
m }

M
m=1 sampled with replacement

using importance weights w
(τ)
j = π(θ(τ)j )/

∑N
n=1 w

(τ−1)
n Kτ(θ∗j |θ

(τ−1)
n ) and perturbed via Kτ to generate

θ(τ)j , until M datasets Y j ∼ M
θ(τ)j

satisfy ∆(Yd,Y j) < ετ . Parameter values are therefore sequentially

updated, enabling the posterior pετ (θ |Y
d) ≈

∑M
j=1 w

(τ)
j δ(θ−θ(τ)j )/M at τ = NMC to be used to infer θ.

4. Imaging simulation
Here, we present a ship track emulation example and parameter learning with ABC-SMC.

A snapshot of five simulated images taken 20 time steps apart with time step ∆ = 0.2 hours are shown
in Figure 3. In this study, four ships were simulated in 300 × 500 longitude/latitude units appearing
at staggered times. The tracks were generated using ship positions, spawning, persistence and death
processes within a simulated circular wind motion where µ(xt ) = 10π

√
(x − 0.2t)2 + (y + 0.1t)2/4N∆.

An initial realistic cloud background image, where cloud pixels also moved with the simulated wind
field, was omitted for illustration purposes. In particular, tracks are observed to follow both the ships’
directions and wind field, with diffusivity emphasized by the broadening of each track through time.
Further, pixel intensities are observed to be higher when cloud tracks overlap, highlighting the expected
increase in pixel intensity when multiple sources are present.

Figure 3 also shows posterior distribution samples drawn using the ABC-SMC algorithm (described
in Section 3) targeting parameters θ = (σβ σx) from the track produced by the red ship, with other input
parameters fixed at their simulated values. Here, it is seen that the algorithm is accurate in learning the
underlying simulation parameters, with true values contained within 95% posterior credible intervals.
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Figure 3. Top: Simulation snapshots taken 4 hours apart, with N = 100, ∆ = 0.2 hours, εb = 5 hours,
σβ = σx = 0.01, λT = 80 hours, σpd

= 0.2 hours, ιL = 0.25 and ιU = 0.75. Ships (red, blue,
purple, yellow) indicated by colored dotted trajectories have initial conditions bt = [5 cos(πt/10N∆)+
3,5 sin(πt/2N∆)+ 2], [1+ 5t/N∆,18− 2t/N∆], [1+ 5t/N∆,18− 10t/N∆], [−4+ 10t/N∆,10+ 2t/N∆]
respectively, with heads (orange). Wind direction shown via yellow arrows and tracks indicated by white
trajectories. Bottom: Approximate posterior densities for θ1 = σβ (left) and θ2 = σx (right) shown
with estimated values (red), true values (black) and 95% credible intervals (blue). Here, NMC = 4,
M = 50, θi ∼ Lognormal(−5,1),Kτ(θi |θ∗i ) = Uniform(max(0, θ∗i − σ

(τ)
i ), θ

∗
i + σ

(τ)
i ) component wise,

with σ(τ)i = 0.5(max1≤k≤M {θ
(k ,τ−1)
i } − min1≤k≤M {θ

(k ,τ−1)
i }); ε0 = 1 and ετ>0 computed at the 80%

quantiles of accepted parameter distances at the previous iteration (Filippi et al., 2013).

5. Discussion and follow-up work
In this paper, we have described and demonstrated a computational method to emulate aerosol-cloud
tracks given wind and ship fields, using an SPDE that incorporates aerosol packet birth, motion, dif-
fusion and death. A demonstration of data assimilation and parameter learning using simulation-based
ABC-SMC, highlights the power of our algorithm in learning aerosol-cloud behavior from simulated
inputs. Incorporating parameters that account for observed wind data from ERA-5 reanalysis and avail-
able atmospheric information that are well-documented to contribute to cloud track formation, such
as cloud condensation nuclei (CCN), liquid water path (LWP), and low-lying cloud cover, would also
improve emulation of more realistic aerosol-cloud behaviors, for comparison with satellite imagery.

Using this methodology, future work is to verify that this surrogate model is accurate in representing
aerosol-cloud paths using satellite imagery and Large Eddy Simulations (LES). This is challenging as
real tracks have poorly identifiable sources and the relationship between observed atmospheric proper-
ties and track behavior is not trivial to infer from imagery alone. Currently, methods are being pursued to
validate against real and LES data through model calibration, matching satellite-observed lateral behav-
ior and the vertical dispersion of tracks in LES. LES runs will also enable incorporation of dependencies
on physical dependencies such as the aforementioned CNN, LWP and low-lying cloud cover.

While this would allow application of the presented methodology, the high computational burden
that is expected when using simulation-based learning for high-resolution feature-rich satellite imagery,
must be taken into account. For example, leveraging (pre-processing) image compression and feature
extraction algorithms such as Convolution Neural Networks (CNNs) already developed for this problem
(Yuan et al., 2019), could result in improved structured sparsity and reduce computational complexity.
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